Chapter 2: Problem 2
In Exercises \(1-6,\) find the average rate of change of the function over each interval. \(f(x)=\sqrt{4 x+1}\) (a) $$[0,2] \quad$$ (b) $$[10,12]$$
Chapter 2: Problem 2
In Exercises \(1-6,\) find the average rate of change of the function over each interval. \(f(x)=\sqrt{4 x+1}\) (a) $$[0,2] \quad$$ (b) $$[10,12]$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(67 - 70\) , use the following function. \(f ( x ) = \left\\{ \begin{array} { l l } { 2 - x , } & { x \leq 1 } \\ { \frac { x } { 2 } + 1 , } & { x > 1 } \end{array} \right.\) Multiple Choice What is the value of \(f ( 1 ) ?\) (A) 5\(/ 2 \quad\) (B) 3\(/ 2 \quad\) (C) (D) 0 1(E) does not exist
In Exercises 49 and 50 , determine the limit. Assume that $$\lim _ { x \rightarrow 4 } f ( x ) = 0$$ and $$\lim _ { x \rightarrow 4 } g ( x ) = 3$$ (a) $$\lim _ { x \rightarrow 4 } ( g ( x ) + 3 )$$ (b) $$\lim _ { x \rightarrow 4 } x f ( x )$$ (c) $$\lim _ { x \rightarrow 4 } g ^ { 2 } ( x ) \quad \quad$$ (d) $$\lim _ { x \rightarrow 4 } \frac { g ( x ) } { f ( x ) - 1 }$$
In Exercises \(59 - 62 ,\) find the limit graphically. Use the Sandwich Theorem to confirm your answer. $$\lim _ { x \rightarrow 0 } x \sin x$$
Free Fall on a Small Airless Planet A rock released from rest to fall on a small airless planet falls \(y = g t ^ { 2 } \mathrm { m }\) in \(t \mathrm { sec } , g\) a constant. Suppose that the rock falls to the bottom of a crevasse 20\(\mathrm { m }\) below and reaches the bottom in 4\(\mathrm { sec. }\) (a) Find the value of \(g .\) (b) Find the average speed for the fall. (c) With what speed did the rock hit the bottom?
In Exercises \(55 - 58 ,\) complete parts \(( a ) - ( d )\) for the piecewise- definedfunction. \(\quad (\) a) Draw the graph of \(f\) . (b) At what points \(c\) in the domain of \(f\) does \(\lim _ { x \rightarrow c } f ( x )\) exist? (c) At what points \(c\) does only the left-hand limit exist? (d) At what points \(c\) does only the right-hand limit exist? $$f ( x ) = \left\\{ \begin{array} { l l } { \cos x , } & { - \pi \leq x < 0 } \\\ { \sec x , } & { 0 \leq x \leq \pi } \end{array} \right.$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.