Chapter 2: Problem 19
In Exercises \(19 - 28 ,\) determine the limit graphically. Confirm algebraically. $$\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } - 1 }$$
Chapter 2: Problem 19
In Exercises \(19 - 28 ,\) determine the limit graphically. Confirm algebraically. $$\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } - 1 }$$
All the tools & learning materials you need for study success - in one app.
Get started for freeTrue or False \(\lim _ { x \rightarrow 0 } \frac { x + \sin x } { x } = 2 .\) Justify your answer.
In Exercises \(71 - 74 ,\) complete the following tables and state what you believe \(\lim _ { x \rightarrow 0 } f ( x )\) to be. $$\begin{array} { c | c c c c c } { x } & { - 0.1 } & { - 0.01 } & { - 0.001 } & { - 0.0001 } & { \dots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \end{array}$$ $$\begin{array} { c c c c c } { \text { (b) } } & { 0.1 } & { 0.01 } & { 0.001 } & { 0.0001 } & { \ldots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \\\ \hline \end{array}$$ $$f ( x ) = \sin \frac { 1 } { x }$$
Horizontal Tangent At what point is the tangent to \(f(x)=3-4 x-x^{2}\) horizontal?
Multiple Choice Which of the following statements about the function \(f(x)=\left\\{\begin{array}{ll}{2 x,} & {0 < x < 1} \\ {1,} & {x=1} \\\ {-x+3,} & {1 < x < 2}\end{array}\right.\) is not true? (A) \(f(1)\) does not exist. (B) \(\lim _{x \rightarrow 0^{+}} f(x)\) exists. (C) \(\lim _{x \rightarrow 2^{-}} f(x)\) exists. (D) \(\lim _{x \rightarrow 1} f(x)\) exists. (E) \(\lim _{x \rightarrow 1} f(x)=f(1)\)
In Exercises \(19-22,\) (a) find the slope of the curve at \(x=a\) . (b) Writing to Learn Describe what happens to the tangent at \(x=a\) as \(a\) changes. $$y=9-x^{2}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.