Chapter 2: Problem 16
In Exercises 13-20, use graphs and tables to find the limits. $$\lim _{x \rightarrow-3^{+}} \frac{x}{x+3}$$
Chapter 2: Problem 16
In Exercises 13-20, use graphs and tables to find the limits. $$\lim _{x \rightarrow-3^{+}} \frac{x}{x+3}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeStandardized Test Questions You should solve the following problems without using a graphing calculator. True or False If the graph of a function has a tangent line at \(x=a,\) then the graph also has a normal line at \(x=a\) . Justify your answer.
In Exercises \(71 - 74 ,\) complete the following tables and state what you believe \(\lim _ { x \rightarrow 0 } f ( x )\) to be. $$\begin{array} { c | c c c c c } { x } & { - 0.1 } & { - 0.01 } & { - 0.001 } & { - 0.0001 } & { \dots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \end{array}$$ $$\begin{array} { c c c c c } { \text { (b) } } & { 0.1 } & { 0.01 } & { 0.001 } & { 0.0001 } & { \ldots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \\\ \hline \end{array}$$ $$f ( x ) = x \sin \frac { 1 } { x }$$
In Exercises \(19 - 28 ,\) determine the limit graphically. Confirm algebraically. $$\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } - 1 }$$
True or False \(\lim _ { x \rightarrow 0 } \frac { x + \sin x } { x } = 2 .\) Justify your answer.
In Exercises \(7 - 14 ,\) determine the limit by substitution. Support graphically. $$\lim _ { x \rightarrow 1 } \left( x ^ { 3 } + 3 x ^ { 2 } - 2 x - 17 \right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.