Chapter 2: Problem 10
In Exercises 9-12, find the limit and confirm your answer using the Sandwich Theorem. $$\lim _{x \rightarrow-\infty} \frac{1-\cos x}{x^{2}}$$
Chapter 2: Problem 10
In Exercises 9-12, find the limit and confirm your answer using the Sandwich Theorem. $$\lim _{x \rightarrow-\infty} \frac{1-\cos x}{x^{2}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 49 and 50 , determine the limit. Assume that $$\lim _ { x \rightarrow b } f ( x ) = 7$$ and $$\lim _ { x \rightarrow b } g ( x ) = - 3$$ (a) $$\lim _ { x \rightarrow b } ( f ( x ) + g ( x ) ) \quad \quad$$ (b) $$\lim _ { x \rightarrow b } ( f ( x ) \cdot g ( x ) )$$ (c) $$\lim _ { x \rightarrow b } 4 g ( x ) - \quad$$ (d) $$\lim _ { x \rightarrow b } \frac { f ( x ) } { g ( x ) }$$
In Exercises \(71 - 74 ,\) complete the following tables and state what you believe \(\lim _ { x \rightarrow 0 } f ( x )\) to be. $$\begin{array} { c | c c c c c } { x } & { - 0.1 } & { - 0.01 } & { - 0.001 } & { - 0.0001 } & { \dots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \end{array}$$ $$\begin{array} { c c c c c } { \text { (b) } } & { 0.1 } & { 0.01 } & { 0.001 } & { 0.0001 } & { \ldots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \\\ \hline \end{array}$$ $$f ( x ) = \frac { 10 ^ { x } - 1 } { x }$$
Free Fall on a Small Airless Planet A rock released from rest to fall on a small airless planet falls \(y = g t ^ { 2 } \mathrm { m }\) in \(t \mathrm { sec } , g\) a constant. Suppose that the rock falls to the bottom of a crevasse 20\(\mathrm { m }\) below and reaches the bottom in 4\(\mathrm { sec. }\) (a) Find the value of \(g .\) (b) Find the average speed for the fall. (c) With what speed did the rock hit the bottom?
In Exercises \(51 - 54 ,\) complete parts \(( a ) , (\) b) \(,\) and \(( c )\) for the piecewise-defined function. $$c = - 1 , f ( x ) = \left\\{ \begin{array} { l l } { 1 - x ^ { 2 } , } & { x \neq - 1 } \\ { 2 , } & { x = - 1 } \end{array} \right.$$
True or False If lim \(f ( x ) = 2\) and \(\lim f ( x ) = 2 ,\) then $$\lim _ { x \rightarrow c } f ( x ) = 2 .$$ Justify your answer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.