Chapter 1: Problem 43
Explorations Hyperbolas Let \(x=a \sec t\) and \(y=b \tan t\) (a) Writing to Learn Let \(a=1,2,\) or \(3, b=1,2,\) or \(3,\) and graph using the parameter interval \((-\pi / 2, \pi / 2)\) . Explain what you see, and describe the role of \(a\) and \(b\) in these parametric equations. (Caution: If you get what appear to be asymptomes, try using the approximation \([-1.57,1.57]\) for the parameter interval.) (b) Let \(a=2, b=3,\) and graph in the parameter interval \((\pi / 2,3 \pi / 2)\) . Explain what you see. (c) Writing to Learn Let \(a=2, b=3,\) and graph using the parameter interval \((-\pi / 2,3 \pi / 2) .\) Explain why you must be careful about graphing in this interval or any interval that contains \(\pm \pi / 2\) . (d) Use algebra to explain why \(\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1\) (e) Let \(x=a\) tan \(t\) and \(y=b\) sec \(t .\) Repeat (a), (b), and (d) using an appropriate version of \((\mathrm{d}) .\)