Chapter 1: Problem 31
Cholera Bacteria Suppose that a colony of bacteria starts with 1 bacterium and doubles in number every half hour. How many bacteria will the colony contain at the end of 24 \(\mathrm{h}\) ?
Chapter 1: Problem 31
Cholera Bacteria Suppose that a colony of bacteria starts with 1 bacterium and doubles in number every half hour. How many bacteria will the colony contain at the end of 24 \(\mathrm{h}\) ?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 49 and \(50,\) (a) draw the graph of the function. Then find its (b) domain and (c) range. $$f(x)=x+5, \quad g(x)=x^{2}-3$$
Transformations Let \(x=(2 \cos t)+h\) and \(y=(2 \sin t)+k\) (a) Writing to Learn Let \(k=0\) and \(h=-2,-1,1,\) and \(2,\) in turn. Graph using the parameter interval \([0,2 \pi]\) . Describe the role of \(h\) (b) Writing to Learn Let \(h=0\) and \(k=-2,-1,1,\) and \(2,\) in turn. Graph using the parameter interval \([0,2 \pi] .\) Describe the role of \(k\) (c) Find a parametrization for the circle with radius 5 and center at \((2,-3)\)(d) Find a parametrization for the ellipse centered at \((-3,4)\) with semi major axis of length 5 parallel to the \(x\) -axis and semi-minor axis of length 2 parallel to the \(y\) -axis (d) Find a parametrization for the ellipse centered at \((-3,4)\) with semi major axis of length 5 parallel to the \(x\) -axis and semi minor axis of length 2 parallel to the \(y\) -axis.
In Exercises \(31-34,\) graph the piecewise-defined functions. $$f(x)=\left\\{\begin{array}{ll}{3-x,} & {x \leq 1} \\ {2 x,} & {1 < x}\end{array}\right.$$
In Exercises \(31-36,\) solve the equation in the specified interval. $$\csc x=2\( \)0 < x <\( 2\)\pi$$
Writing to Learn For a curve to be symmetric about the \(x\) -axis, the point \((x, y)\) must lie on the curve if and only if the point \((x,-y)\) lies on the curve. Explain why a curve that is symmetric about the \(x\) -axis is not the graph of a function, unless the function is \(y=0 .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.