Chapter 1: Problem 27
In Exercises \(23-28,\) find a parametrization for the curve. the ray (half line) with initial point \((2,3)\) that passes through the point \((-1,-1)\)
Chapter 1: Problem 27
In Exercises \(23-28,\) find a parametrization for the curve. the ray (half line) with initial point \((2,3)\) that passes through the point \((-1,-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWriting to Learn For a curve to be symmetric about the \(x\) -axis, the point \((x, y)\) must lie on the curve if and only if the point \((x,-y)\) lies on the curve. Explain why a curve that is symmetric about the \(x\) -axis is not the graph of a function, unless the function is \(y=0 .\)
In Exercises \(63-66,\) (a) graph \(f \circ g\) and \(g \circ f\) and make a conjecture about the domain and range of each function. (b) Then confirm your conjectures by finding formulas for \(f \circ g\) and \(g \circ f\) . $$f(x)=x-7, \quad g(x)=\sqrt{x}$$
Let \(y_{1}=x^{2}\) and \(y_{2}=2^{x}\) . (a) Graph \(y_{1}\) and \(y_{2}\) in \([-5,5]\) by \([-2,10] .\) How many times do you think the two graphs cross? (b) Compare the corresponding changes in \(y_{1}\) and \(y_{2}\) as \(x\) changes from 1 to \(2,2\) to \(3,\) and so on. How large must \(x\) be for the changes in \(y_{2}\) to overtake the changes in \(y_{1} ?\) (c) Solve for \(x : x^{2}=2^{x}\) . \(\quad\) (d) Solve for \(x : x^{2}<2^{x}\)
Multiple Choice Which of the following gives the range of \(y=4-2^{-x} ?\) \((\mathbf{A})(-\infty, \infty) \quad(\mathbf{B})(-\infty, 4) \quad(\mathbf{C})[-4, \infty)\) \((\mathbf{D})(-\infty, 4]\) (E) all reals
In Exercises \(31-34,\) graph the piecewise-defined functions. $$f(x)=\left\\{\begin{array}{ll}{1,} & {x<0} \\ {\sqrt{x},} & {x \geq 0}\end{array}\right.$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.