Chapter 1: Problem 23
In Exercises \(13-24,\) find \(f^{-1}\) and verify that $$\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$$ \(f(x)=\frac{2 x+1}{x+3}\)
Chapter 1: Problem 23
In Exercises \(13-24,\) find \(f^{-1}\) and verify that $$\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$$ \(f(x)=\frac{2 x+1}{x+3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeTrigonometric ldentities Let f(x)=\sin x+\cos x (a) Graph \(y=f(x)\) . Describe the graph. (b) Use the graph to identify the amplitude, period, horizontal shift, and vertical shift. (c) Use the formula \(\sin \alpha \cos \beta+\cos \alpha \sin \beta=\sin (\alpha+\beta)\) for the sine of the sum of two angles to confirm your answers.
In Exercises \(37-40\) , use the given information to find the values of the six trigonometric functions at the angle \(\theta\) . Give exact answers. $$\theta=\sin ^{-1}\left(\frac{8}{17}\right)$$
In Exercises \(27-30\) , give the measure of the angle in radians and degrees. Give exact answers whenever possible. $$\cos ^{-1}(0.7)$$
Supporting the Quotient Rule Let \(y_{1}=\ln (x / a), y_{2}=\) \(\ln x, y_{3}=y_{2}-y_{1,}\) and \(y_{4}=e^{y_{3}}\) (a) Graph \(y_{1}\) and \(y_{2}\) for \(a=2,3,4,\) and \(5 .\) How are the graphs of \(y_{1}\) and \(y_{2}\) related? (b) Graph \(y_{3}\) for \(a=2,3,4,\) and \(5 .\) Describe the graphs.
Population of California Table 1.12 gives the population of California for several years. Population of California $$\begin{array}{ll}{\text { Year }} & {\text { Population (thousands) }} \\\ {1980} & {23,668} \\ {1990} & {29,811} \\ {1995} & {31,697} \\ {1998} & {32,988} \\ {1999} & {33,499} \\ {2000} & {33,872}\end{array}$$ (a) Let \(x=0\) represent \(1980, x=1\) represent \(1981,\) and so forth. Find an exponential regression for the data, and superimpose its graph on a scatter plot of the data. (b) Use the exponential regression equation to estimate the population of California in \(2003 .\) How close is the estimate to the actual population of \(35,484,000\) in 2003\(?\) (c) Use the exponential regression equation to estimate the annual rate of growth of the population of California.
What do you think about this solution?
We value your feedback to improve our textbook solutions.