Chapter 1: Problem 17
In Exercises \(13-24,\) find \(f^{-1}\) and verify that $$\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$$ \(f(x)=x^{2}, \quad x \leq 0\)
Chapter 1: Problem 17
In Exercises \(13-24,\) find \(f^{-1}\) and verify that $$\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$$ \(f(x)=x^{2}, \quad x \leq 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeBacteria Growth The number of bacteria in a petri dish culture after \(t\) hours is $$B=100 e^{0.693 t}$$ (a) What was the initial number of bacteria present? (b) How many bacteria are present after 6 hours? (c) Approximately when will the number of bacteria be 200\(?\) Estimate the doubling time of the bacteria.
In Exercises \(31-34,\) graph the piecewise-defined functions. $$f(x)=\left\\{\begin{array}{ll}{3-x,} & {x \leq 1} \\ {2 x,} & {1 < x}\end{array}\right.$$
Explorations Hyperbolas Let \(x=a \sec t\) and \(y=b \tan t\) (a) Writing to Learn Let \(a=1,2,\) or \(3, b=1,2,\) or \(3,\) and graph using the parameter interval \((-\pi / 2, \pi / 2)\) . Explain what you see, and describe the role of \(a\) and \(b\) in these parametric equations. (Caution: If you get what appear to be asymptomes, try using the approximation \([-1.57,1.57]\) for the parameter interval.) (b) Let \(a=2, b=3,\) and graph in the parameter interval \((\pi / 2,3 \pi / 2)\) . Explain what you see. (c) Writing to Learn Let \(a=2, b=3,\) and graph using the parameter interval \((-\pi / 2,3 \pi / 2) .\) Explain why you must be careful about graphing in this interval or any interval that contains \(\pm \pi / 2\) . (d) Use algebra to explain why \(\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1\) (e) Let \(x=a\) tan \(t\) and \(y=b\) sec \(t .\) Repeat (a), (b), and (d) using an appropriate version of \((\mathrm{d}) .\)
Enter \(y_{1}=\sqrt{x}, y_{2}=\sqrt{1-x}\) and \(y_{3}=y_{1}+y_{2}\) on your grapher. (a) Graph \(y_{3}\) in \([-3,3]\) by \([-1,3]\) (b) Compare the domain of the graph of \(y_{3}\) with the domains of the graphs of \(y_{1}\) and \(y_{2}\) . (c) Replace \(y_{3}\) by \(y_{1}-y_{2}, \quad y_{2}-y_{1}, \quad y_{1} \cdot y_{2}, \quad y_{1} / y_{2}, \quad\) and \(\quad y_{2} / y_{1}\) in turn, and repeat the comparison of part (b). (d) Based on your observations in \((b)\) and \((c),\) what would you conjecture about the domains of sums, differences, products, and quotients of functions?
True or False The function \(f(x)=x^{4}+x^{2}+x\) is an even function. Justify your answer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.