Chapter 5: Problem 54
Household electric current can be modeled by the voltage \(V=\hat{V} \sin (120 \pi t+\phi)\), where \(t\) is measured in seconds, \(\hat{V}\) is the maximum value that \(V\) can attain, and \(\phi\) is the phase angle. Such a voltage is usually said to be 60 -cycle, since in 1 second the voltage goes through 60 oscillations. The root-mean-square voltage, usually denoted by \(V_{\mathrm{rms}}\) is defined to be the square root of the average of \(V^{2} .\) Hence $$ V_{\mathrm{rms}}=\sqrt{\int_{\phi}^{1+\phi}(\hat{V} \sin (120 \pi t+\phi))^{2} d t} $$ A good measure of how much heat a given voltage can produce is given by \(V_{\mathrm{rms}}\) (a) Compute the average voltage over 1 second. (b) Compute the average voltage over \(1 / 60\) of a second. (c) Show that \(V_{\mathrm{rms}}=\frac{\hat{V} \sqrt{2}}{2}\) by computing the integral for \(V_{\mathrm{rms}}\) Hint: \(\int \sin ^{2} t d t=-\frac{1}{2} \cos t \sin t+\frac{1}{2} t+C .\) (d) If the \(V_{\mathrm{rms}}\) for household current is usually 120 volts, what is the value \(\hat{V}\) in this case?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.