Chapter 10: Problem 44
The position of a comet with a highly eccentric elliptical orbit \((e\) very near 1\()\) is measured with respect to a fixed polar axis (sun is at a focus but the polar axis is not an axis of the ellipse) at two times, giving the two points \((4, \pi / 2)\) and \((3, \pi / 4)\) of the orbit. Here distances are measured in astronomical units \((1 \mathrm{AU} \approx 93\) million miles). For the part of the orbit near the sun, assume that \(e=1\), so the orbit is given by $$r=\frac{d}{1+\cos \left(\theta-\theta_{0}\right)}$$ (a) The two points give two conditions for \(d\) and \(\theta_{0}\). Use them to show that \(4.24 \cos \theta_{0}-3.76 \sin \theta_{0}-2=0\) (b) Solve for \(\theta_{0}\) using Newton's Method. (c) How close does the comet get to the sun?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.