The value of three slope calculated in step 2 must be equal.
\(\begin{aligned}2a &= 2b - 2\\a &= b - 1\end{aligned}\)
And
\(\begin{aligned}2b - 2 &= \frac{{{b^2} - 2b + 2 - {a^2}}}{{b - a}}\\2b - 2 &= \frac{{{b^2} - 2b + 2 - {{\left( {b - 1} \right)}^2}}}{{b - \left( {b - 1} \right)}}\\2b - 2 &= {b^2} - 2b + 2 - {b^2} + 2b - 1\\2b &= 3\\b &= \frac{3}{2}\end{aligned}\)
So, \(a = \frac{1}{2}\)
So, the point of tangents are:
\(\left( {a,{a^2}} \right) \equiv \left( {\frac{1}{2},\frac{1}{4}} \right)\)
And
\(\begin{aligned}\left( {b,{b^2} - 2b + 2} \right) &\equiv \left( {\frac{3}{2},{{\left( {\frac{3}{2}} \right)}^2} - 2\left( {\frac{3}{2}} \right) + 2} \right)\\ &\equiv \left( {\frac{3}{2},\frac{9}{4} - 1} \right)\\ &\equiv \left( {\frac{3}{2},\frac{5}{4}} \right)\end{aligned}\)