Chapter 2: Q81E (page 77)
For what values of \(a\) and \(b\) is the line \(2x + y = b\) tangent to the parabola \(y = a{x^2}\) when \(x = 2\)?
Short Answer
The values of \(a = - \frac{1}{2}\) and \(b = 2\).
Chapter 2: Q81E (page 77)
For what values of \(a\) and \(b\) is the line \(2x + y = b\) tangent to the parabola \(y = a{x^2}\) when \(x = 2\)?
The values of \(a = - \frac{1}{2}\) and \(b = 2\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the values of a and b that make f continuous everywhere.
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)
19-24Explain why the function is discontinuous at the given number\(a\). Sketch the graph of the function.
20. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x + 2}}}&{if\;x \ne 2}\\1&{if\;x = - 2}\end{array}} \right.\), \({\bf{a = - 2}}\)
Explain what it means to say that
\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{1}}^ - }} f\left( x \right) = {\bf{3}}\)and \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{1}}^ + }} f\left( x \right) = {\bf{7}}\)
In this situation, is it possible that\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{1}}} f\left( x \right)\) exists? Explain.
For the function f whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{1}}} f\left( x \right)\)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ - }} f\left( x \right)\)
(c) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ + }} f\left( x \right)\)
(d) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{3}}} f\left( x \right)\)
(e) \(f\left( {\bf{3}} \right)\)
Each limit represents the derivative of some function f at some number a. State such as an f and a in each case.
\(\mathop {{\bf{lim}}}\limits_{x \to \frac{{\bf{1}}}{{\bf{4}}}} \frac{{\frac{{\bf{1}}}{x} - {\bf{4}}}}{{x - \frac{{\bf{1}}}{{\bf{4}}}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.