Chapter 2: Q77E (page 77)
Use Definition 8 to prove that \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } \frac{1}{x} = 0\).
Short Answer
It is proved that \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } \frac{1}{x} = 0\).
Chapter 2: Q77E (page 77)
Use Definition 8 to prove that \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } \frac{1}{x} = 0\).
It is proved that \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } \frac{1}{x} = 0\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
31. \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} - 1} \right) = 3\)
19-32: Prove the statement using the \(\varepsilon ,{\rm{ }}\delta \) definition of a limit.
26. \(\mathop {\lim }\limits_{x \to 0} {x^3} = 0\)
Find all points on the curve\({{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy = 2}}\) where theslope of the tangent line is \({\rm{ - 1}}\)
19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
32. \(\mathop {\lim }\limits_{x \to 2} {x^3} = 8\)
The table shows the position of a motorcyclist after accelerating from rest.
t(seconds) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
s(feet) | 0 | 4.9 | 20.6 | 46.5 | 79.2 | 124.8 | 176.7 |
(a) Find the average velocity for each time period:
(i) \(\left( {{\bf{2}},{\bf{4}}} \right)\) (ii) \(\left( {{\bf{3}},{\bf{4}}} \right)\) (iii) \(\left( {{\bf{4}},{\bf{5}}} \right)\) (iv) \(\left( {{\bf{4}},{\bf{6}}} \right)\)
(b) Use the graph of s as a function of t to estimate the instantaneous velocity when \(t = {\bf{3}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.