Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the limit

\(\mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} = - 3\)

Illustrate Definition 7 by finding values of \(N\) that correspond to \( \in = 0.1\) and \( \in = 0.05\).

Short Answer

Expert verified

(a) \( \in = 0.1\), the value of \(N\) is \(12\).

(b) \( \in = 0.05\), the value of \(N\) is \(22\).

Step by step solution

01

Precise Definition of a limit at infinity

Assume \(f\) be any function defined on the interval \(\left( {a,\infty } \right)\). Then \(\mathop {{\rm{lim}}}\limits_{x \to \infty } f\left( x \right) = L\) ,

which implies that for every \( \in > 0\) there exist a number \(N\) such that if \(x > N\) then \(\left| {f\left( x \right) - L} \right| < \in \).

We have to find the value of \(N\)that satisfy if \(x > N\) then \(\left| {\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right)} \right| < \in \).

Assume \( \in = 0.1\), then \(\left| {\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right)} \right| < 0.1\).

Assume \( \in = 0.05\), then \(\left| {\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right)} \right| < 0.05\).

02

Rewrite the inequality 

Apply the absolute property, that is, if \(\left| x \right| < a\) then \( - a < x < a\).

\(\begin{array}{c} - 0.1 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right) < 0.1\\ - 0.1 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} + 3 < 0.1\\ - 0.1 - 3 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} < 0.1 - 3\\ - 3.1 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} < - 2.9\end{array}\)

03

Plot the graph of the function

Draw the graph of the function\(f\left( x \right) = \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }}\), \(g\left( x \right) = - 3.1\) and \(h\left( x \right) = - 2.9\) by using the graphing calculator as:

1. Open the graphing calculator. Select the “STAT PLOT” and enter the equation\(\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }}\)in the\({Y_1}\)tab,\( - 3.1\)in the \({Y_2}\)tab and\( - 2.9\) in the \({Y_3}\)tab.

2. Enter the “GRAPH” button in the graphing calculator.

3. Use “INTERSECT” feature of graphing to obtain the solution.

The graph of the functions is shown below:

04

Observe the graph

From the graph, it is observed that the curve of the function crosses the line \(y = - 2.9\) when \(x \approx 11.283\).

This implies that the curve lies between \( - 2.9\) and \( - 3.1\) when \(x \approx 12\).

Thus, if \(x > 12\) then \(\left| {\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right)} \right| < 0.1\). Therefore, \(N = 12\).

05

Rewrite the inequality

Apply the absolute property, that is, if \(\left| x \right| < a\) then \( - a < x < a\).

\(\begin{array}{c} - 0.05 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right) < 0.05\\ - 0.05 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} + 3 < 0.05\\ - 0.05 - 3 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} < 0.05 - 3\\ - 3.05 < \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} < - 2.95\end{array}\)

06

Plot the graph of the function

Draw the graph of the function\(f\left( x \right) = \frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }}\), \(g\left( x \right) = - 3.05\) and \(h\left( x \right) = - 2.95\) by using the graphing calculator as:

1. Open the graphing calculator. Select the “STAT PLOT” and enter the equation\(\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }}\)in the\({Y_1}\)tab,\( - 3.05\)in the \({Y_2}\)tab and\( - 2.95\) in the \({Y_3}\)tab.

2. Enter the “GRAPH” button in the graphing calculator.

3. Use “INTERSECT” feature of graphing to obtain the solution.

The graph of the functions is shown below:

07

Observe the graph

From the graph, it is observed that the curve of the function crosses the line \(y = - 2.95\) when \(x \approx 21.379\).

This implies that the curve lies between \( - 2.95\) and \( - 3.05\) when \(x \approx 22\).

Thus, if \(x > 22\) then \(\left| {\frac{{1 - 3x}}{{\sqrt {{x^2} + 1} }} - \left( { - 3} \right)} \right| < 0.05\). Therefore, \(N = 22\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) The van der Waals equation for \({\rm{n}}\) moles of a gas is \(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\) where \(P\)is the pressure,\(V\) is the volume, and\(T\) is the temperature of the gas. The constant\(R\) is the universal gas constant and\(a\)and\(b\)are positive constants that are characteristic of a particular gas. If \(T\) remains constant, use implicit differentiation to find\(\frac{{dV}}{{dP}}\).

(b) Find the rate of change of volume with respect to pressure of \({\rm{1}}\) mole of carbon dioxide at a volume of \(V = {\rm{10}}L\) and a pressure of \(P = {\rm{2}}{\rm{.5atm}}\). Use \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\)and \(b = {\rm{0}}{\rm{.04267}}L/mole\).

A particle moves along a straight line with the equation of motion\(s = f\left( t \right)\), where s is measured in meters and t in seconds.Find the velocity and speed when\(t = {\bf{4}}\).

\(f\left( t \right) = {\bf{10}} + \frac{{{\bf{45}}}}{{t + {\bf{1}}}}\)

Find an equation of the tangent line to the graph of \(y = g\left( x \right)\)at\(x = {\bf{5}}\), if\(g\left( {\bf{5}} \right) = - {\bf{3}}\), and \(g'\left( {\bf{5}} \right) = {\bf{4}}\).

Find an equation of the tangent line to the graph of \(y = B\left( x \right)\)at\(x = 6\),if\(B\left( {\bf{6}} \right) = {\bf{0}}\),and \(B'\left( 6 \right) = - \frac{1}{2}\).

19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.

32. \(\mathop {\lim }\limits_{x \to 2} {x^3} = 8\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free