Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate\(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}}\).

Short Answer

Expert verified

The value of limit is \(\mathop {\lim }\limits_{x \to 2} \,\,\frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}} = \frac{1}{2}\).

Step by step solution

01

Rationalize the given function

Rationalize the given function by multiplying the conjugate of denominator and numerator as follows:

\(\mathop {\lim }\limits_{x \to 2} \,\,\frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}} = \mathop {\lim }\limits_{x \to 2} \,\,\frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}} \cdot \frac{{\sqrt {6 - x} + 2}}{{\sqrt {6 - x} + 2}} \cdot \frac{{\sqrt {3 - x} + 1}}{{\sqrt {3 - x} + 1}}\)

02

Simplify the above expression

Simplify the above obtained expression using formula\(\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\), as shown below:

\(\begin{aligned}\mathop {\lim }\limits_{x \to 2} \,\,\frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}} &= \mathop {\lim }\limits_{x \to 2} \,\,\frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}} \cdot \frac{{\sqrt {6 - x} + 2}}{{\sqrt {6 - x} + 2}} \cdot \frac{{\sqrt {3 - x} + 1}}{{\sqrt {3 - x} + 1}}\\ &= \mathop {\lim }\limits_{x \to 2} \,\frac{{{{\left( {\sqrt {6 - x} } \right)}^2} - {2^2}}}{{{{\left( {\sqrt {3 - x} } \right)}^2} - {1^2}}} \cdot \frac{{\sqrt {3 - x} + 1}}{{\sqrt {6 - x} + 2}}\\ &= \mathop {\lim }\limits_{x \to 2} \,\frac{{6 - x - 4}}{{3 - x - 1}} \cdot \frac{{\sqrt {3 - x} + 1}}{{\sqrt {6 - x} + 2}}\\ &= \mathop {\lim }\limits_{x \to 2} \,\frac{{2 - x}}{{2 - x}} \cdot \frac{{\sqrt {3 - x} + 1}}{{\sqrt {6 - x} + 2}}\\\mathop {\lim }\limits_{x \to 2} \,\frac{{\sqrt {3 - x} + 1}}{{\sqrt {6 - x} + 2}}\end{aligned}\).

03

Apply the limit

Finally, apply the limit by plugging\(x = 2\)into the simplified expression as:

\(\begin{aligned}\mathop {\lim }\limits_{x \to 2} \,\frac{{\sqrt {3 - x} + 1}}{{\sqrt {6 - x} + 2}} &= \frac{{\sqrt {3 - 2} + 1}}{{\sqrt {6 - 2} + 2}}\\ &= \frac{{1 + 1}}{{2 + 2}}\\ &= \frac{2}{4}\\ &= \frac{1}{2}\end{aligned}\)

Thus, the value of limit is \(\mathop {\lim }\limits_{x \to 2} \,\,\frac{{\sqrt {6 - x} - 2}}{{\sqrt {3 - x} - 1}} = \frac{1}{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain in your own words what is meant by the equation

\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} f\left( x \right) = {\bf{5}}\)

Is it possible for this statement to be true and yet \(f\left( {\bf{2}} \right) = {\bf{3}}\)? Explain.

Sketch the graph of the function gthat is continuous on its domain \(\left( { - {\bf{5}},{\bf{5}}} \right)\) and where\(g\left( {\bf{0}} \right) = {\bf{1}}\), \(g'\left( {\bf{0}} \right) = {\bf{1}}\), \(g'\left( { - {\bf{2}}} \right) = {\bf{0}}\), \(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{5}}^ + }} g\left( x \right) = \infty \), and \(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{5}}^ - }} g\left( x \right) = {\bf{3}}\).

A particle moves along a straight line with the equation of motion\(s = f\left( t \right)\), where s is measured in meters and t in seconds.Find the velocity and speed when\(t = {\bf{4}}\).

\(f\left( t \right) = {\bf{10}} + \frac{{{\bf{45}}}}{{t + {\bf{1}}}}\)

The cost (in dollars) of producing \[x\] units of a certain commodity is \(C\left( x \right) = 5000 + 10x + 0.05{x^2}\).

(a) Find the average rate of change of \(C\) with respect to \[x\]when the production level is changed

(i) From \(x = 100\)to \(x = 105\)

(ii) From \(x = 100\)to \(x = 101\)

(b) Find the instantaneous rate of change of \(C\) with respect to\(x\) when \(x = 100\). (This is called the marginal cost. Its significance will be explained in Section 3.7.)

Each limit represents the derivative of some function \(f\) at some number \(a\). State such an \(f\) and \(a\) in each case.

\(\mathop {{\rm{lim}}}\limits_{\theta \to \pi /6} \frac{{{\rm{sin}}\theta - \frac{1}{2}}}{{\theta - \frac{\pi }{6}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free