(b)
The derivative of a function can be obtained using the formula given below:
\(g'\left( a \right) = \mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right) - g\left( a \right)}}{{x - a}}\)
Substitute the value of \(g\left( x \right)\) in the above formula:
\(\begin{align}{g}'\left( a \right)&=\underset{x\to a}{\mathop{\lim }}\,\frac{g\left( x \right)-g\left( a \right)}{x-a} \\ &=\underset{x\to a}{\mathop{\lim }}\,\frac{{{x}^{{2}/{3}\;}}-{{a}^{{2}/{3}\;}}}{x-a} \\ &=\underset{x\to a}{\mathop{\lim }}\,\frac{\left( {{x}^{{1}/{3}\;}}-{{a}^{{1}/{3}\;}} \right)\left( {{x}^{{1}/{3}\;}}+{{a}^{{1}/{3}\;}} \right)}{\left( {{x}^{{1}/{3}\;}}-{{a}^{{1}/{3}\;}} \right)\left( {{x}^{{2}/{3}\;}}+{{a}^{{2}/{3}\;}}+{{x}^{{1}/{3}\;}}{{a}^{{1}/{3}\;}} \right)} \\ &=\underset{x\to a}{\mathop{\lim }}\,\frac{{{x}^{{1}/{3}\;}}+{{a}^{{1}/{3}\;}}}{\left( {{x}^{{2}/{3}\;}}+{{a}^{{2}/{3}\;}}+{{x}^{{1}/{3}\;}}{{a}^{{1}/{3}\;}} \right)}\end{align}\)
Solve further the above equation,
\(\begin{align}{g}'\left( a \right)&=\frac{{{a}^{{1}/{3}\;}}+{{a}^{{1}/{3}\;}}}{\left( {{a}^{{2}/{3}\;}}+{{a}^{{2}/{3}\;}}+{{a}^{{1}/{3}\;}}{{a}^{{1}/{3}\;}} \right)} \\ &=\frac{2{{a}^{{1}/{3}\;}}}{3{{a}^{{2}/{3}\;}}} \\ &=\frac{2}{3{{a}^{{1}/{3}\;}}}\end{align}\)
Hence, the value of \(g'\left( a \right)\) is \(\frac{2}{3{{a}^{{1}/{3}\;}}}\)