Thehorizontal asymptote of the curve\(y = f\left( x \right)\)for the line \(y = L\)is\(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = L\) or \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\).
Thevertical asymptote of the curve\(y = f\left( x \right)\)for the line \(x = a\)are shown below:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty \,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \infty \,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \infty \\\mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty \,\,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \,\,\,\,\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \end{array}\)