Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

47-52: Find the horizontal and vertical asymptotes of each curve. You may want to use a graphing calculator (or computer) to check your work by graphing the curve and estimating the asymptotes.

49. \(y = \frac{{2{x^2} + x - 1}}{{{x^2} + x - 2}}\)

Short Answer

Expert verified

The line \(y = 2\) is a horizontal asymptote of the curve. The vertical lines \(x = - 2\) and \(x = 1\) is the vertical asymptotes of the curve.

Step by step solution

01

Condition for horizontal asymptotes and vertical asymptotes

Thehorizontal asymptote of the curve\(y = f\left( x \right)\)for the line \(y = L\)is\(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = L\) or \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\).

Thevertical asymptote of the curve\(y = f\left( x \right)\)for the line \(x = a\)are shown below:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty \,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \infty \,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \infty \\\mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty \,\,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \,\,\,\,\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \end{array}\)

02

Determine the horizontal and vertical asymptotes of the curve

Divide both numerator and denominator by the highest power of\(x\)in the denominator and evaluate the horizontal asymptotes as shown below:

\(\begin{aligned}\mathop {\lim }\limits_{x \to \pm \infty } \frac{{2{x^2} + x - 1}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{\frac{{2{x^2} + x - 1}}{{{x^2}}}}}{{\frac{{{x^2} + x - 2}}{{{x^2}}}}}\\ &= \mathop {\lim }\limits_{x \to \pm \infty } \frac{{2 + \frac{1}{x} - \frac{1}{{{x^2}}}}}{{1 + \frac{1}{x} - \frac{2}{{{x^2}}}}}\\ &= \frac{{\mathop {\lim }\limits_{x \to \pm \infty } \left( {2 + \frac{1}{x} - \frac{1}{{{x^2}}}} \right)}}{{\mathop {\lim }\limits_{x \to \pm \infty } \left( {1 + \frac{1}{x} - \frac{2}{{{x^2}}}} \right)}}\\ &= \frac{{\mathop {\lim }\limits_{x \to \pm \infty } 2 + \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{x} - \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \pm \infty } 1 + \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{x} - 2\mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{{x^2}}}}}\\ &= \frac{{2 + 0 - 0}}{{1 + 0 - 2\left( 0 \right)}}\\ &= 2\end{aligned}\)

Therefore, the line\(y = 2\)is a horizontal asymptote of the curve.

Write the equation as shown below:

\(\begin{aligned}y &= f\left( x \right)\\ &= \frac{{2{x^2} + x - 1}}{{{x^2} + x - 2}}\\ &= \frac{{\left( {2x - 1} \right)\left( {x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}}\end{aligned}\)

Determine the vertical asymptotes of the curve as shown below:

\

\(\begin{array}{l}\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = \infty \left( {{\mathop{\rm since}\nolimits} \,\left( {2x - 1} \right)\left( {x + 1} \right) \to 5\,\,\,{\mathop{\rm and}\nolimits} \,\,\left( {x + 2} \right)\left( {x - 1} \right) \to {0^ - }\,\,{\mathop{\rm as}\nolimits} \,\,x \to - {2^ - }} \right)\\\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = - \infty \left( {{\mathop{\rm since}\nolimits} \,\left( {2x - 1} \right)\left( {x + 1} \right) \to 5\,\,\,{\mathop{\rm and}\nolimits} \,\,\left( {x + 2} \right)\left( {x - 1} \right) \to {0^ + }\,\,{\mathop{\rm as}\nolimits} \,\,x \to - {2^ + }} \right)\\\mathop {\lim }\limits_{x \to {1^{^ - }}} f\left( x \right) = - \infty \left( {{\mathop{\rm since}\nolimits} \,\left( {2x - 1} \right)\left( {x + 1} \right) \to 2\,\,{\mathop{\rm and}\nolimits} \,\,\left( {x + 2} \right)\left( {x - 1} \right) \to {0^ - }\,\,{\mathop{\rm as}\nolimits} \,\,x \to {1^ - }} \right)\\\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \infty \left( {{\mathop{\rm since}\nolimits} \,\left( {2x - 1} \right)\left( {x + 1} \right) \to 2\,\,{\mathop{\rm and}\nolimits} \,\,\left( {x + 2} \right)\left( {x - 1} \right) \to {0^ + }\,\,{\mathop{\rm as}\nolimits} \,\,x \to {1^ + }} \right)\end{array}\)

Therefore, the vertical line \(x = - 2\) and \(x = 1\) is the vertical asymptotes of the curve.

03

Check the answer by graphing the curve

The procedure to draw the graph of the equation by using the graphing calculator is as follows:

To check the answer, draw the graph of the function\(f\left( x \right) = \frac{{2{x^2} + x - 1}}{{{x^2} + x - 2}}\)by using the graphing calculator as shown below:

  1. Open the graphing calculator. Select the “STAT PLOT” and enter the equation \(\left( {2{X^2} + X - 1} \right)/\left( {{X^2} + X - 2} \right)\) in the \({Y_1}\) tab.
  2. Enter the equation\(y = 2\)in the second tab.
  3. Enter the equation\(x = - 2\)in the third tab.
  4. Enter the equation\(x = 1\)in the fourth tab.
  5. Enter the “GRAPH” button in the graphing calculator.

Visualization of the graph of the function \(f\left( x \right) = \frac{{2{x^2} + x - 1}}{{{x^2} + x - 2}}\) as shown below:

It is observed from the graph that the line \(y = 2\) is the horizontal asymptote and \(x = - 2\)\(x = 1\) are the vertical asymptotes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.

30. \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 2x - 7} \right) = 1\)

Sketch the graph of the function gthat is continuous on its domain \(\left( { - {\bf{5}},{\bf{5}}} \right)\) and where\(g\left( {\bf{0}} \right) = {\bf{1}}\), \(g'\left( {\bf{0}} \right) = {\bf{1}}\), \(g'\left( { - {\bf{2}}} \right) = {\bf{0}}\), \(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{5}}^ + }} g\left( x \right) = \infty \), and \(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{5}}^ - }} g\left( x \right) = {\bf{3}}\).

If a rock is thrown upward on the Planet Mars with a velocity of 10 m/s, its height in meters t seconds later it is given by \(y = {\bf{10}}t - {\bf{1}}.{\bf{86}}{t^{\bf{2}}}\).

(a) Find the average velocity over the given time intervals:

(i) \(\left( {{\bf{1}},{\bf{2}}} \right)\)

(ii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{5}}} \right)\)

(iii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{1}}} \right)\)

(iv) \(\left( {{\bf{1}},{\bf{1}}.{\bf{01}}} \right)\)

(v) \(\left( {{\bf{1}},{\bf{1}}.{\bf{001}}} \right)\)

(b) Estimate the instantaneous velocity when \(t = {\bf{1}}\).

(a) The curve with equation \({y^{\rm{2}}} = {x^{\rm{3}}} + {\rm{3}}{{\rm{x}}^{\rm{2}}}\) is called the Tschirnhausen cubic. Find an equation of the tangent line to this curve at the point \(\left( {{\rm{1,}} - {\rm{2}}} \right)\).

(b) At what points does this curve have a horizontal tangent?

(c) Illustrate parts (a) and (b) by graphing the curve and the tangent lines on a common screen.

(a) If\(F\left( x \right) = \frac{{5x}}{{\left( {1 + {x^2}} \right)}}\), \(F'\left( 2 \right)\) and use it to find an equation of the tangent line to the curve \(y = \frac{{5x}}{{1 + {x^2}}}\) at the point \(\left( {2,2} \right)\).

(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free