Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find all points on the curve\({{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy = 2}}\) where theslope of the tangent line is \({\rm{ - 1}}\)

Short Answer

Expert verified

The points at which the slope of the tangent line is \({\rm{ - 1}}\) are \(\left( {{\rm{ - 1, - 1}}} \right)\) and \(\left( {{\rm{1,1}}} \right)\)

Step by step solution

01

Step\({\rm{1}}\): Given information

The given equation of the curve is \({{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy = 2}}\)with the slope of the tangent line is \({\rm{ - 1}}\)

02

Step\({\rm{2}}\): Definition of implicit differentiation

Implicit differentiation:This method consists of differentiating both sides of the equation with respect to\({\rm{x}}\)and then solving the resulting equation for\({\rm{y'}}\)

03

Step\({\rm{3}}\): Differentiate the given equation with respect to \({\rm{x}}\)

The given equation of the curve is \({{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy = 2}}\)

Differentiate both sides with respect to \({\rm{x}}\)

\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy}}} \right){\rm{ = }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\rm{2}} \right)\)

The Product rule for differentiation

\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{f}}\left( {\rm{x}} \right){\rm{ \times g}}\left( {\rm{x}} \right)} \right){\rm{ = f'}}\left( {\rm{x}} \right){\rm{ \times g}}\left( {\rm{x}} \right){\rm{ + f}}\left( {\rm{x}} \right){\rm{ \times g'}}\left( {\rm{x}} \right)\)

Chain rule: The chain rule states that the derivative of\({\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)\)is equal to\({\rm{f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{ \times g'}}\left( {\rm{x}} \right)\)

\(\begin{array}{l}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}} \right){\rm{ + }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{xy}}} \right){\rm{ = 0}}\\\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{\rm{2}}}} \right){\rm{ \times }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{x}}^{\rm{2}}}{\rm{ \times }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{y}}^{\rm{2}}}} \right){\rm{ + }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\rm{x}} \right){\rm{ \times y + }}\left( {\rm{x}} \right){\rm{ \times }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\rm{y}} \right){\rm{ = 0}}\\{\rm{2x}}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{x}}^{\rm{2}}}{\rm{ \times 2y \times }}\frac{{\rm{d}}}{{{\rm{dx}}}}{\rm{y + 1 \times y + xy' = 0}}\\{\rm{2x}}{{\rm{y}}^{\rm{2}}}{\rm{ + 2}}{{\rm{x}}^{\rm{2}}}{\rm{yy' + y + xy' = 0}}\end{array}\)

04

Step\({\rm{4}}\): Find the value of \({\rm{x}}\)

As slope of tangent line is \({\rm{ - 1}}\) that means \({\rm{y' = - 1}}\)

\(\begin{array}{l}{\rm{2x}}{{\rm{y}}^{\rm{2}}}{\rm{ + 2}}{{\rm{x}}^{\rm{2}}}{\rm{y}}\left( {{\rm{ - 1}}} \right){\rm{ + y + x}}\left( {{\rm{ - 1}}} \right){\rm{ = 0}}\\{\rm{2x}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2}}{{\rm{x}}^{\rm{2}}}{\rm{y + y - x = 0}}\\{\rm{2xy}}\left( {{\rm{y - x}}} \right){\rm{ + y - x = 0}}\\\left( {{\rm{y - x}}} \right)\left( {{\rm{2xy + 1}}} \right){\rm{ = 0}}\end{array}\)

So it has to be satisfied \({\rm{y - x = 0}}\) or \({\rm{2xy + 1 = 0}}\)

05

Step\({\rm{5}}\): Find the points for the condition \({\rm{y - x = 0}}\)

Substitute \({\rm{y = x}}\) in the given curve \({{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy = 2}}\)

\(\begin{array}{l}\left( {{{\rm{x}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{{\rm{x}}^{\rm{2}}}} \right){\rm{ + }}\left( {\rm{x}} \right){\rm{ \times }}\left( {\rm{x}} \right){\rm{ = 2}}\\{{\rm{x}}^{\rm{4}}}{\rm{ + }}{{\rm{x}}^{\rm{2}}}{\rm{ - 2 = 0}}\end{array}\)

Now, let \({\rm{t = }}{{\rm{x}}^{\rm{2}}}\)

The equation becomes \({{\rm{t}}^{\rm{2}}}{\rm{ + t - 2 = 0}}\)

Quadratic formula: If\({\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx + c = 0}}\)be a quadratic equation, where\(a,b\)the coefficients,\(x\)is the variable and\(c\)is the constant term then quadratic formula is equal to\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\)

By quadratic formula

\(\begin{array}{l}{\rm{t = }}\frac{{{\rm{ - 1 \pm }}\sqrt {{{\rm{1}}^{\rm{2}}}{\rm{ - 4 \times 1 \times }}\left( {{\rm{ - 2}}} \right)} }}{{{\rm{2 \times 1}}}}\\{\rm{ = }}\frac{{{\rm{ - 1 \pm }}\sqrt {{\rm{1 + 8}}} }}{{\rm{2}}}\\{\rm{ = }}\frac{{{\rm{ - 1 \pm 3}}}}{{\rm{2}}}\end{array}\)

Thus \({\rm{t = 1}}\) and \({\rm{,t = - 2}}\)

As \({\rm{t = }}{{\rm{x}}^{\rm{2}}}\) this implies that,

\(\begin{array}{l}{\rm{1 = }}{{\rm{x}}^{\rm{2}}}\\{\rm{x = \pm 1}}\end{array}\)

But \({\rm{ - 2 = }}{{\rm{x}}^{\rm{2}}}\) is never satisfied because \({{\rm{x}}^{\rm{2}}}{\rm{ > 0}}\)

So, substitute \({\rm{x = \pm 1}}\) in \({\rm{y = x}}\)

\({\rm{y = \pm 1}}\)

Therefore, the points at which the slope of the tangent line is \({\rm{ - 1}}\) are \(\left( {{\rm{ - 1, - 1}}} \right)\) and \(\left( {{\rm{1,1}}} \right)\)

06

Step\({\rm{6}}\): Find the points for the condition \({\rm{2xy + 1 = 0}}\)

Substitute \({\rm{x = - }}\frac{{\rm{1}}}{{{\rm{2y}}}}\) in the given curve \({{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + xy = 2}}\)

\(\begin{array}{l}{\left( {{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2y}}}}} \right)^{\rm{2}}}{\rm{ \times }}\left( {{{\rm{y}}^{\rm{2}}}} \right){\rm{ + }}\left( {{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2y}}}}} \right){\rm{ \times }}\left( {\rm{y}} \right){\rm{ = 2}}\\\frac{{\rm{1}}}{{{\rm{4}}{{\rm{y}}^{\rm{2}}}}}{\rm{ \times }}{{\rm{y}}^{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ = 2}}\\\frac{{\rm{1}}}{{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ = 2}}\\{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ = 2}}\end{array}\)

Which is never satisfy

Therefore, the points at which the slope of the tangent line is \({\rm{ - 1}}\) are \(\left( {{\rm{ - 1, - 1}}} \right)\) and \(\left( {{\rm{1,1}}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.

20. \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{5}}} \left( {\frac{{\bf{3}}}{{\bf{2}}}x - \frac{{\bf{1}}}{{\bf{2}}}} \right) = {\bf{7}}\)

Fanciful shapes can be created by using the implicit plotting capabilities of computer algebra systems.

(a) Graph the curve with equation \(y\left( {{y^{\rm{2}}} - {\rm{1}}} \right)\left( {y - {\rm{2}}} \right) = x\left( {x - {\rm{1}}} \right)\left( {x - {\rm{2}}} \right)\).

At how many points does this curve have horizontal tangents? Estimate the \(x\)-coordinates of these points.

(b) Find equations of the tangent lines at the points \(\left( {{\rm{0,1}}} \right)\)and \(\left( {{\rm{0,2}}} \right)\).

(c) Find the exact \({\rm{x}}\)-coordinates of the points in part (a).

(d) Create even more fanciful curves by modifying the equation in part (a).

Sketch the graph of the function fwhere the domain is \(\left( { - {\bf{2}},{\bf{2}}} \right)\),\(f'\left( {\bf{0}} \right) = - {\bf{2}}\), \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ - }} f\left( x \right) = \infty \), f is continuous at all numbers in its domain except \( \pm {\bf{1}}\), and f is odd.

For what value of the constant c is the function f continuous on \(\left( { - \infty ,\infty } \right)\)?

47. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{c{x^{\bf{2}}} + {\bf{2}}x}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{{x^3} - cx}&{{\bf{if}}\,\,\,x \ge {\bf{2}}}\end{array}} \right.\)

The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion \(s = {\bf{2sin}}\pi {\bf{t}} + {\bf{3cos}}\pi t\), where t is measured in seconds.

(a) Find the average velocity for each time period:

(i) \(\left( {{\bf{1}},{\bf{2}}} \right)\) (ii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{1}}} \right)\) (iii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{01}}} \right)\) (iv) \(\left( {{\bf{1}},{\bf{1}}.{\bf{001}}} \right)\)

(b) Estimate the instantaneous velocity of the particle when\(t = {\bf{1}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free