Chapter 2: Q44E (page 77)
44: Suppose that \(\mathop {{\rm{lim}}}\limits_{x \to a} f\left( x \right) = \infty \) and \(\mathop {{\rm{lim}}}\limits_{x \to a} g\left( x \right) = c\), where \(c\) is a real number. Prove each statement.
(a) \(\mathop {{\rm{lim}}}\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \infty \)
(b) \(\mathop {{\rm{lim}}}\limits_{x \to a} \left( {f\left( x \right)g\left( x \right)} \right) = \infty \)if \(c > 0\)
(c) \(\mathop {{\rm{lim}}}\limits_{x \to a} \left( {f\left( x \right)g\left( x \right)} \right) = - \infty \)if \(c < 0\)
Short Answer
(a) It is proved that \(\mathop {{\rm{lim}}}\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \infty \).
(b) It is proved that \(\mathop {{\rm{lim}}}\limits_{x \to a} \left( {f\left( x \right)g\left( x \right)} \right) = \infty \) if \(c > 0\).
(c) It is proved that \(\mathop {{\rm{lim}}}\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = - \infty \) if \(c < 0\).