(a)
(i)
Evaluate the limit as shown below:
\(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right)\)
Since \(\,\frac{2}{x} \to 0\), and \(\frac{1}{{\ln x}} \to 0\) as \(x \to \infty \). So, the value of the limit is shown below:
\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right) = 0\)
Thus, the solution of the limit is \(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = 0\).
(ii)
Evaluate the limit as shown below:
\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right)\)
Since \(\,\frac{2}{x} \to \infty \), and \(\frac{1}{{\ln x}} \to 0\) as \(x \to {0^ + }\). So, the value of the limit is shown below:
\(\mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right) = \infty \)
Thus, the solution of the limit is \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \infty \).
(iii)
Evaluate the limits as shown below:
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right)\)
Since \(\,\frac{2}{x} \to 2\), and \(\frac{1}{{\ln x}} \to - \infty \) as \(x \to {1^ - }\). So, the value of the limit is shown below:
\(\mathop {\lim }\limits_{x \to {1^ - }} \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right) = \infty \)
Thus, the solution of the limit is \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \infty \).
(iv)
Evaluate the limits as shown below:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right)\left( {{\mathop{\rm since}\nolimits} \,\,\frac{2}{x} \to 2\,\,{\mathop{\rm and}\nolimits} \,\,\frac{1}{{\ln x}} \to \infty \,\,{\mathop{\rm as}\nolimits} \,\,x \to {1^ + }} \right)\\ = - \infty \end{array}\)
Since \(\,\frac{2}{x} \to 2\), and \(\frac{1}{{\ln x}} \to \infty \) as \(x \to {1^ + }\). So, the value of the limit is shown below:
\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} - \frac{1}{{\ln x}}} \right) = - \infty \)
Thus, the solution of the limit is \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = - \infty \).