Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The graph of \(f\) is given. State, with reasons, the numbers at which \(f\) is not differentiable.

Short Answer

Expert verified

The numbers at which \(f\) is not differentiable are \(x = 1\) and \(x = 5\).

Step by step solution

01

Differentiability of the Function

The function is a differentiable function whenever the derivatives of that given particular function seem to exist at any particular point within the interval of convergence.

02

Find the numbers at which the function is not differentiable.

The given graph is:

Clearly, at\(x = 1\), the derivative of the curve cannot be defined, so differentiability is undefined. And at \(x = 5\), the function is having vertical tangent.

Hence, the numbers at which \(f\) is not differentiable are\(x = 1\) and \(x = 5\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\({x^{\rm{2}}} + {y^{\rm{2}}} = ax\), \({x^{\rm{2}}} + {y^{\rm{2}}} = by\).

41-42 Show that f is continuous on \(\left( { - \infty ,\infty } \right)\).

\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{\bf{sin}}\,x}&{{\bf{if}}\,\,x < \frac{\pi }{{\bf{4}}}}\\{{\bf{cos}}\,x}&{{\bf{if}}\,\,\,x \ge \frac{\pi }{{\bf{4}}}}\end{array}} \right.\)

If \(g\left( x \right) = {x^4} - 2\), find \(g'\left( 1 \right)\) and use it to find an equation of the tangent line to the curve \(y = {x^4} - 2\) at the point \(\left( {1, - 1} \right)\).

(a) The van der Waals equation for \({\rm{n}}\) moles of a gas is \(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\) where \(P\)is the pressure,\(V\) is the volume, and\(T\) is the temperature of the gas. The constant\(R\) is the universal gas constant and\(a\)and\(b\)are positive constants that are characteristic of a particular gas. If \(T\) remains constant, use implicit differentiation to find\(\frac{{dV}}{{dP}}\).

(b) Find the rate of change of volume with respect to pressure of \({\rm{1}}\) mole of carbon dioxide at a volume of \(V = {\rm{10}}L\) and a pressure of \(P = {\rm{2}}{\rm{.5atm}}\). Use \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\)and \(b = {\rm{0}}{\rm{.04267}}L/mole\).

Let\(f\left( x \right) = 1/x\), and \(g\left( x \right) = 1/{x^2}\).

(a) Find \(\left( {f \circ g} \right)\left( x \right)\).

(b) Is\(f \circ g\) continuous everywhere? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free