Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the limit or show that it does not exist.

42. \(\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {{\rm{ln}}\left( {2 + x} \right) - {\rm{ln}}\left( {1 + x} \right)} \right)\)

Short Answer

Expert verified

The value of the limit is \(\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {{\rm{ln}}\left( {2 + x} \right) - {\rm{ln}}\left( {1 + x} \right)} \right) = 0\).

Step by step solution

01

Apply logarithm property

Apply the logarithmic property \({\rm{ln}}a - {\rm{ln}}b = {\rm{ln}}\frac{a}{b}\).

Use the property and simplify the limit expression.

\(\begin{aligned}\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {{\rm{ln}}\left( {2 + x} \right) - {\rm{ln}}\left( {1 + x} \right)} \right) &= \mathop {{\rm{lim}}}\limits_{x \to \infty } {\rm{ln}}\frac{{\left( {2 + x} \right)}}{{1 + x}}\\ &= {\rm{ln}}\left( {\mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{{\left( {2 + x} \right)}}{{1 + x}}} \right)\\ &= {\rm{ln}}\left( {\mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{{\left( {\frac{2}{x} + 1} \right)}}{{\frac{1}{x} + 1}}} \right)\end{aligned}\)

02

Apply Quotient laws 

According to the Quotient law,\(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where\(\mathop {\lim }\limits_{x \to a} f\left( x \right)\)and\(\mathop {\lim }\limits_{x \to a} g\left( x \right)\)exists and\(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

\({\rm{ln}}\left( {\mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{{\left( {\frac{2}{x} + 1} \right)}}{{\frac{1}{x} + 1}}} \right) = {\rm{ln}}\left( {\frac{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{2}{x} + 1} \right)}}{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{1}{x} + 1} \right)}}} \right)\)

03

Apply sum laws

According to sum law,\(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where\(\mathop {\lim }\limits_{x \to a} f\left( x \right)\)and\(\mathop {\lim }\limits_{x \to a} g\left( x \right)\)exists.

\[\begin{aligned}{\rm{ln}}\left( {\frac{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{2}{x} + 1} \right)}}{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{1}{x} + 1} \right)}}} \right) &= {\rm{ln}}\left( {\frac{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{2}{x} + \mathop {{\rm{lim}}}\limits_{x \to \infty } 1}}{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{1}{x} + \mathop {{\rm{lim}}}\limits_{x \to \infty } 1}}} \right)\\ &= {\rm{ln}}\left( {\frac{{0 + 1}}{{0 + 1}}} \right)\\ &= {\rm{ln}}\left( 1 \right)\\ &= 0\end{aligned}\]

Thus, the value of the limit is \(0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.

29. \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 5} \right) = 1\)

Sketch the graph of the function g for which \(g\left( {\bf{0}} \right) = g\left( {\bf{2}} \right) = g\left( {\bf{4}} \right) = {\bf{0}}\), \(g'\left( {\bf{1}} \right) = g'\left( {\bf{3}} \right) = {\bf{0}}\), \(g'\left( {\bf{0}} \right) = g'\left( {\bf{4}} \right) = {\bf{1}}\), \(g'\left( {\bf{2}} \right) = - {\bf{1}}\), \(\mathop {{\bf{lim}}}\limits_{x \to \infty } g\left( x \right) = \infty \), and \(\mathop {{\bf{lim}}}\limits_{x \to - \infty } g\left( x \right) = - \infty \).

Find the values of a and b that make f continuous everywhere.

\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)

Sketch the graph of the function fwhere the domain is \(\left( { - {\bf{2}},{\bf{2}}} \right)\),\(f'\left( {\bf{0}} \right) = - {\bf{2}}\), \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ - }} f\left( x \right) = \infty \), f is continuous at all numbers in its domain except \( \pm {\bf{1}}\), and f is odd.

For the function h whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.

(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{3}}^ - }} h\left( x \right)\)

(b)\(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{3}}^ + }} h\left( x \right)\)

(c) \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} h\left( x \right)\)

(d) \(h\left( { - {\bf{3}}} \right)\)

(e) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{0}}^ - }} h\left( x \right)\)

(f) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{0}}^ + }} h\left( x \right)\)

(g) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{0}}} h\left( x \right)\)

(h) \(h\left( {\bf{0}} \right)\)

(i) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} h\left( x \right)\)

(j) \(h\left( {\bf{2}} \right)\)

(k) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{5}}^ + }} h\left( x \right)\)

(l) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{5}}^ - }} h\left( x \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free