Consider that \(\left( {4x - 9} \right) \le f\left( x \right) \le {x^2} - 4x + 7\).
Obtain the limit\(\mathop {\lim }\limits_{x \to 4} f\left( x \right)\) as shown below:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \left( {4x - 9} \right) &=& 4\left( 4 \right) - 9\\ &=& 16 - 9\\ &=& 7\end{array}\)
And,
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \left( {{x^2} - 4x + 7} \right) &=& {4^2} - 4\left( 4 \right) + 7\\ &=& 7\end{array}\)
It follows that \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = 7\) according to the Squeeze theorem because \(\left( {4x - 9} \right) \le f\left( x \right) \le {x^2} - 4x + 7\) for any \(x \ge 0\).
Thus, the value of the limit is \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = 7\).