Thegiven function is\(f\left( x \right) = x + 2\sin x\).
Differentiating the given function with respect to\(x\)and equating it to zero, we get:
\(\begin{aligned}\frac{d}{{dx}}\left( {f\left( x \right)} \right) &= 0\\\frac{d}{{dx}}\left( {x + 2\sin x} \right) &= 0\\1 + 2\cos x &= 0\\\cos x &= - \frac{1}{2}\\x &= \left( {\frac{{2\pi }}{3} + 2\pi n} \right)\,\,{\rm{or }}\left( {\frac{{4\pi }}{3} + 2\pi n} \right)\,\,\,\,\,\,\forall n \in {\rm I}\\x &= \left( {2n + 1} \right)\pi \pm \frac{\pi }{3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\forall n \in {\rm I}\end{aligned}\)
Hence, the required answer is \(x = \left( {2n + 1} \right)\pi \pm \frac{\pi }{3},\,\,\,\,\,\,\,{\rm{for}}\,\,n \in {\rm I}\).