Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) The van der Waals equation for \({\rm{n}}\) moles of a gas is \(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\) where \(P\)is the pressure,\(V\) is the volume, and\(T\) is the temperature of the gas. The constant\(R\) is the universal gas constant and\(a\)and\(b\)are positive constants that are characteristic of a particular gas. If \(T\) remains constant, use implicit differentiation to find\(\frac{{dV}}{{dP}}\).

(b) Find the rate of change of volume with respect to pressure of \({\rm{1}}\) mole of carbon dioxide at a volume of \(V = {\rm{10}}L\) and a pressure of \(P = {\rm{2}}{\rm{.5atm}}\). Use \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\)and \(b = {\rm{0}}{\rm{.04267}}L/mole\).

Short Answer

Expert verified

From the van der Waals equation \(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\) by implicit differentiation the value \(\frac{{dV}}{{dP}} = \frac{{\left( {nb - V} \right){V^{\rm{2}}}}}{{P{V^{\rm{2}}} + {n^{\rm{2}}}a\left( {{\rm{1}} + nbV - {V^{\rm{2}}}} \right)}}\), and rate of change of volume with respect to pressure is \({\rm{9}}{\rm{.5674}}L/atm\).

Step by step solution

01

Given Information

(a) The given van der Waals equation for \({\rm{n}}\) moles of a gas is\(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\). (b) The values to find rate of change of volume with respect to pressure are \(n = {\rm{1}}\), \(V = {\rm{10L}}\), \(P = {\rm{2}}{\rm{.5atm}}\), \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\) and \(b = {\rm{0}}{\rm{.04267}}L/mole\).

02

Definition of Derivative

The derivative of a real-valued function measures the sensitivity of the function's value (output value) to changes in its argument in mathematics (input value).

03

Implicit differentiation

Differentiate the van der Waals equation for \({\rm{n}}\) moles, with respect to \(P\), such that \(T\) remains constant.

\(\begin{array}{c}\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\\\left( {{\rm{1}} - \frac{{{n^{\rm{2}}}a}}{V}\frac{{dV}}{{dP}}} \right)\left( {V - nb} \right) + \left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {\frac{{dV}}{{dP}} - {\rm{0}}} \right) = {\rm{0}}\\\left( { - {n^{\rm{2}}}a + \frac{{{n^{\rm{3}}}ab}}{V} + P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\frac{{dV}}{{dP}} = nb - V\\\frac{{dV}}{{dP}} = \frac{{\left( {nb - V} \right){V^{\rm{2}}}}}{{P{V^{\rm{2}}} + {n^{\rm{2}}}a\left( {{\rm{1}} + nbV - {V^{\rm{2}}}} \right)}}\end{array}\)

04

Rate of change of volume with respect to pressure

Substitute the values \(n = {\rm{1}}\), \(V = {\rm{10L}}\), \(P = {\rm{2}}{\rm{.5atm}}\), \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\) and \(b = {\rm{0}}{\rm{.04267}}L/mole\) in \(\frac{{dV}}{{dP}}\) and find the rate of change of volume with respect to pressure.

\(\begin{array}{l}\frac{{dV}}{{dP}} = \frac{{\left( {nb - V} \right){V^{\rm{2}}}}}{{P{V^{\rm{2}}} + {n^{\rm{2}}}a\left( {{\rm{1}} + nbV - {V^{\rm{2}}}} \right)}}\\\frac{{dV}}{{dP}} = \frac{{\left( {\left( {\rm{1}} \right)\left( {{\rm{0}}{\rm{.04267}}} \right) - \left( {{\rm{10}}} \right)} \right){{\left( {{\rm{10}}} \right)}^{\rm{2}}}}}{{\left( {{\rm{2}}{\rm{.5}}} \right){{\left( {{\rm{10}}} \right)}^{\rm{2}}} + {{\left( {\rm{1}} \right)}^{\rm{2}}}\left( {{\rm{3}}{\rm{.592}}} \right)\left( {{\rm{1}} + \left( {\rm{1}} \right)\left( {{\rm{0}}{\rm{.04267}}} \right)\left( {{\rm{10}}} \right) - {{\left( {{\rm{10}}} \right)}^{\rm{2}}}} \right)}}\\\frac{{dV}}{{dP}} = \frac{{ - {\rm{995}}{\rm{.733}}}}{{{\rm{250}} + \left( {{\rm{3}}{\rm{.592}}} \right)\left( {{\rm{1}} + {\rm{0}}{\rm{.4267}} - {\rm{100}}} \right)}}\\\frac{{dV}}{{dP}} = {\rm{9}}{\rm{.5674}}L/atm\end{array}\)

Therefore, from the van der Waals equation \(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\) by implicit differentiation the value \(\frac{{dV}}{{dP}} = \frac{{\left( {nb - V} \right){V^{\rm{2}}}}}{{P{V^{\rm{2}}} + {n^{\rm{2}}}a\left( {{\rm{1}} + nbV - {V^{\rm{2}}}} \right)}}\), and rate of change of volume with respect to pressure for \(n = {\rm{1}}\), \(V = {\rm{10L}}\), \(P = {\rm{2}}{\rm{.5atm}}\), \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\) and \(b = {\rm{0}}{\rm{.04267}}L/mole\) is \({\rm{9}}{\rm{.5674}}L/atm\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Fanciful shapes can be created by using the implicit plotting capabilities of computer algebra systems.

(a) Graph the curve with equation \(y\left( {{y^{\rm{2}}} - {\rm{1}}} \right)\left( {y - {\rm{2}}} \right) = x\left( {x - {\rm{1}}} \right)\left( {x - {\rm{2}}} \right)\).

At how many points does this curve have horizontal tangents? Estimate the \(x\)-coordinates of these points.

(b) Find equations of the tangent lines at the points \(\left( {{\rm{0,1}}} \right)\)and \(\left( {{\rm{0,2}}} \right)\).

(c) Find the exact \({\rm{x}}\)-coordinates of the points in part (a).

(d) Create even more fanciful curves by modifying the equation in part (a).

43-45 Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Sketch the graph of f.

\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^{\bf{2}}}}&{{\bf{if}}\,\,\,x < - {\bf{1}}}\\x&{{\bf{if}}\,\,\, - {\bf{1}} \le x < {\bf{1}}}\\{\frac{{\bf{1}}}{x}}&{{\bf{if}}\,\,\,x \ge {\bf{1}}}\end{array}} \right.\)

19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.

20. \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{5}}} \left( {\frac{{\bf{3}}}{{\bf{2}}}x - \frac{{\bf{1}}}{{\bf{2}}}} \right) = {\bf{7}}\)

Explain the meaning of each of the following.

(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} f\left( x \right) = \infty \)

(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{4}}^ + }} f\left( x \right) = - \infty \)

(a)Where does the normal line to the ellipse\({x^2} - xy + {y^2} = 3\) at the point \((1, - 1)\)intersect the ellipse a second time?

(b)Illustrate part (a) by graphing the ellipse and the normal line.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free