Chapter 2: Q38E (page 77)
Determine the infinite limit.
\(\mathop {\lim }\limits_{x \to {3^ - }} \,\frac{{{x^2} + 4x}}{{{x^2} - 2x - 3}}\)
Short Answer
The limit tends to negative infinity.
Chapter 2: Q38E (page 77)
Determine the infinite limit.
\(\mathop {\lim }\limits_{x \to {3^ - }} \,\frac{{{x^2} + 4x}}{{{x^2} - 2x - 3}}\)
The limit tends to negative infinity.
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle moves along a straight line with the equation of motion\(s = f\left( t \right)\), where s is measured in meters and t in seconds.Find the velocity and speed when\(t = {\bf{4}}\).
\(f\left( t \right) = {\bf{80}}t - {\bf{6}}{t^{\bf{2}}}\)
\(y = a{x^{\rm{3}}}\), \({x^{\rm{2}}} + {\rm{3}}{y^{\rm{2}}} = b\).
(a)Where does the normal line to the ellipse\({x^2} - xy + {y^2} = 3\) at the point \((1, - 1)\)intersect the ellipse a second time?
(b)Illustrate part (a) by graphing the ellipse and the normal line.
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
25. \(\mathop {{\bf{lim}}}\limits_{x \to 0} {x^{\bf{2}}} = {\bf{0}}\)
For the function h whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{3}}^ - }} h\left( x \right)\)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{3}}^ + }} h\left( x \right)\)
(c) \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} h\left( x \right)\)
(d) \(h\left( { - {\bf{3}}} \right)\)
(e) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{0}}^ - }} h\left( x \right)\)
(f) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{0}}^ + }} h\left( x \right)\)
(g) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{0}}} h\left( x \right)\)
(h) \(h\left( {\bf{0}} \right)\)
(i) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} h\left( x \right)\)
(j) \(h\left( {\bf{2}} \right)\)
(k) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{5}}^ + }} h\left( x \right)\)
(l) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{5}}^ - }} h\left( x \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.