According to the Difference and sum law,\(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) - g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right)\)and\(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where\(\mathop {\lim }\limits_{x \to a} f\left( x \right)\)and\(\mathop {\lim }\limits_{x \to a} g\left( x \right)\)exists.
\(\begin{array}{c}\frac{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{1}{{{e^x}}} - 1} \right)}}{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{1}{{{e^x}}} + 2} \right)}} = \frac{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{1}{{{e^x}}}} \right) - \mathop {{\rm{lim}}}\limits_{x \to \infty } \left( 1 \right)}}{{\mathop {{\rm{lim}}}\limits_{x \to \infty } \left( {\frac{1}{{{e^x}}}} \right) + \mathop {{\rm{lim}}}\limits_{x \to \infty } \left( 2 \right)}}\\ = \frac{{0 - 1}}{{0 + 2}}\\ = - \frac{1}{2}\end{array}\)
Thus, the value of the limit is \( - \frac{1}{2}\).