Chapter 2: Q36E (page 77)
36: Prove that \(\mathop {\lim }\limits_{x \to 2} \frac{1}{x} = \frac{1}{2}\).
Short Answer
It is proved that \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{x}} \right) = \frac{1}{2}\).
Chapter 2: Q36E (page 77)
36: Prove that \(\mathop {\lim }\limits_{x \to 2} \frac{1}{x} = \frac{1}{2}\).
It is proved that \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{x}} \right) = \frac{1}{2}\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.
22. \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{1}}.{\bf{5}}} \frac{{{\bf{9}} - {\bf{4}}{x^{\bf{2}}}}}{{{\bf{3}} + {\bf{2}}x}} = {\bf{6}}\)
Each limit represents the derivative of some function f at some number a. State such as an f and a in each case.
\(\mathop {{\bf{lim}}}\limits_{x \to \frac{{\bf{1}}}{{\bf{4}}}} \frac{{\frac{{\bf{1}}}{x} - {\bf{4}}}}{{x - \frac{{\bf{1}}}{{\bf{4}}}}}\)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
24. \(\mathop {{\bf{lim}}}\limits_{x \to a} c = c\)
41-42 Show that f is continuous on \(\left( { - \infty ,\infty } \right)\).
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{\bf{1}} - {x^{\bf{2}}}}&{{\bf{if}}\,\,x \le {\bf{1}}}\\{{\bf{ln}}\,x}&{{\bf{if}}\,\,\,x > {\bf{1}}}\end{array}} \right.\)
\(y = a{x^{\rm{3}}}\), \({x^{\rm{2}}} + {\rm{3}}{y^{\rm{2}}} = b\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.