Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

11-34: Evaluate the limit, if it exists.

34. \(\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\frac{1}{{{{\left( {x + h} \right)}^2}}} - \frac{1}{{{x^2}}}}}{h}} \right)\)

Short Answer

Expert verified

The solution of the limit is \( - \frac{2}{{{x^3}}}\).

Step by step solution

01

The limit laws

Let \(c\) be a constant and the limits \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists. Then

  1. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  2. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) - g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  3. \(\mathop {\lim }\limits_{x \to a} \left( {cf\left( x \right)} \right) = c\mathop {\lim }\limits_{x \to a} f\left( x \right)\)
  4. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right)g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  5. \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\,\,{\mathop{\rm if}\nolimits} \,\,\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).
  6. \(\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^n} = {\left( {\,\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right)^n}\), where \(n\) is a positive integer
  7. \(\mathop {\lim }\limits_{x \to a} \sqrt[n]{{f\left( x \right)}} = \,\sqrt[n]{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}\), where \(n\) is a positive integer

(If \(n\) is even, we assume that \(\,\mathop {\lim }\limits_{x \to a} f\left( x \right) > 0\).)

  1. \(\,\mathop {\lim }\limits_{x \to a} c = c\)
  2. \(\,\mathop {\lim }\limits_{x \to a} x = a\)
  3. \(\,\mathop {\lim }\limits_{x \to a} {x^n} = {a^n}\), where \(n\) is a positive integer
  4. \(\,\mathop {\lim }\limits_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}\), where \(n\) is a positive integer

(If \(n\) is even, we assume that \(a > 0\).)

02

 Step 2: Evaluate the limit

Evaluate the limit as shown below:

\(\begin{array}{c}\mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{{{\left( {x + h} \right)}^2}}} - \frac{1}{{{x^2}}}}}{h} &=& \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{{x^2} - {{\left( {x + h} \right)}^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}}}{h}\\ &=& \mathop {\lim }\limits_{h \to 0} \frac{{{x^2} - \left( {{x^2} + 2xh + {h^2}} \right)}}{{h{x^2}{{\left( {x + h} \right)}^2}}}\\ &=& \mathop {\lim }\limits_{h \to 0} \frac{{{x^2} - \left( {{x^2} + 2xh + {h^2}} \right)}}{{h{x^2}{{\left( {x + h} \right)}^2}}}\end{array}\)

Solve further,

\(\begin{array}{c}\mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{{{\left( {x + h} \right)}^2}}} - \frac{1}{{{x^2}}}}}{h} &=& \mathop {\lim }\limits_{h \to 0} \frac{{ - 2xh - h}}{{h{x^2}{{\left( {x + h} \right)}^2}}}\\ &=& \mathop {\lim }\limits_{h \to 0} \frac{{ - h\left( {2x + h} \right)}}{{h{x^2}{{\left( {x + h} \right)}^2}}}\\ &=& \mathop {\lim }\limits_{h \to 0} \frac{{ - \left( {2x + h} \right)}}{{{x^2}{{\left( {x + h} \right)}^2}}}\\ &=& \frac{{ - 2x}}{{{x^2} \cdot {x^2}}}\\ &=& \frac{{ - 2}}{{{x^3}}}\end{array}\)

Thus, the solution of the limit is \( - \frac{2}{{{x^3}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The gravitational force exerted by the planet Earth on a unit mass at a distance r from the center of the planet is

\(F\left( r \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{GMr}}{{{R^{\bf{3}}}}}}&{{\bf{if}}\,\,\,r < R}\\{\frac{{GM}}{{{r^{\bf{2}}}}}}&{{\bf{if}}\,\,\,r \ge R}\end{array}} \right.\)

Where M is the mass of Earth, R is its radius, and G is the gravitational constant. Is F a continuous function of r?

Suppose f and g are continuous functions such that \(g\left( {\bf{2}} \right) = {\bf{6}}\) and \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} \left( {{\bf{3}}f\left( x \right) + f\left( x \right)g\left( x \right)} \right) = {\bf{36}}\). Fine \(f\left( {\bf{2}} \right)\).

Fanciful shapes can be created by using the implicit plotting capabilities of computer algebra systems.

(a) Graph the curve with equation \(y\left( {{y^{\rm{2}}} - {\rm{1}}} \right)\left( {y - {\rm{2}}} \right) = x\left( {x - {\rm{1}}} \right)\left( {x - {\rm{2}}} \right)\).

At how many points does this curve have horizontal tangents? Estimate the \(x\)-coordinates of these points.

(b) Find equations of the tangent lines at the points \(\left( {{\rm{0,1}}} \right)\)and \(\left( {{\rm{0,2}}} \right)\).

(c) Find the exact \({\rm{x}}\)-coordinates of the points in part (a).

(d) Create even more fanciful curves by modifying the equation in part (a).

For what value of the constant c is the function f continuous on \(\left( { - \infty ,\infty } \right)\)?

47. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{c{x^{\bf{2}}} + {\bf{2}}x}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{{x^3} - cx}&{{\bf{if}}\,\,\,x \ge {\bf{2}}}\end{array}} \right.\)

Find \(f'\left( a \right)\).

\(f\left( t \right) = \frac{{\bf{1}}}{{{t^{\bf{2}}} + {\bf{1}}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free