Chapter 2: Q33E (page 77)
11-34: Evaluate the limit, if it exists.
33. \(\mathop {\lim }\limits_{h \to 0} \left( {\frac{{{{\left( {x + h} \right)}^3} - {x^3}}}{h}} \right)\)
Short Answer
The solution of the limit is \(3{x^2}\).
Chapter 2: Q33E (page 77)
11-34: Evaluate the limit, if it exists.
33. \(\mathop {\lim }\limits_{h \to 0} \left( {\frac{{{{\left( {x + h} \right)}^3} - {x^3}}}{h}} \right)\)
The solution of the limit is \(3{x^2}\).
All the tools & learning materials you need for study success - in one app.
Get started for free41-42 Show that f is continuous on \(\left( { - \infty ,\infty } \right)\).
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{\bf{1}} - {x^{\bf{2}}}}&{{\bf{if}}\,\,x \le {\bf{1}}}\\{{\bf{ln}}\,x}&{{\bf{if}}\,\,\,x > {\bf{1}}}\end{array}} \right.\)
Use thegiven graph of f to state the value of each quantity, if it exists. If it does not exists, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ - }} f\left( x \right)\)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ + }} f\left( x \right)\)
(c) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} f\left( x \right)\)
(d) \(f\left( {\bf{2}} \right)\)
(e) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{4}}} f\left( x \right)\)
(f) \(f\left( {\bf{4}} \right)\)
Calculate each of the limits
Find an equation of the tangent line to the graph of \(y = g\left( x \right)\)at\(x = {\bf{5}}\), if\(g\left( {\bf{5}} \right) = - {\bf{3}}\), and \(g'\left( {\bf{5}} \right) = {\bf{4}}\).
Find \(f'\left( a \right)\).
\(f\left( t \right) = \frac{{\bf{1}}}{{{t^{\bf{2}}} + {\bf{1}}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.