Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the limit or show that it does not exist.

32. \(\mathop {lim}\limits_{x \to \infty } \left( {x - \sqrt x } \right)\)

Short Answer

Expert verified

The value of the limit is \(\infty \).

Step by step solution

01

Use the property of limit

A function is continuous at a point “a” if \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)\).

02

Evaluate the given limit

Evaluate the given limit as follows:

\(\begin{aligned}\mathop {\lim }\limits_{x \to \infty } \left( {x - \sqrt x } \right){\rm{ }} &= \mathop {\lim }\limits_{x \to \infty } \left( {x - \sqrt x } \right) \times \frac{{\left( {x + \sqrt x } \right)}}{{{{(x + \sqrt x )}^2}}}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( x \right)}^2} - {{\left( {\sqrt x } \right)}^2}}}{{x\left( {1 + \frac{1}{{\sqrt x }}} \right)}}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {{x^2} - x} \right)}}{{x\left( {1 + \frac{1}{{\sqrt x }}} \right)}}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {{x^2} - 1} \right)}}{{x\left( {1 + \frac{1}{{\sqrt x }}} \right)}}\\ &= \frac{{x\left( {x - 1} \right)}}{{x\left( {1 + \frac{1}{{\sqrt x }}} \right)}}\\ &= \left( {\frac{{\infty - 1}}{{1 + \frac{1}{{\sqrt x }}}}} \right)\\ &= \left( {\frac{\infty }{{1 + 0}}} \right)\\ &= \infty \end{aligned}\)

Thus, the value of the limit is \(\infty \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free