Chapter 2: Q32E (page 77)
Determine the infinite limit.
\(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{\sqrt x }}{{{{\left( {x - 3} \right)}^5}}}\)
Short Answer
The limit tends to negative infinity.
Chapter 2: Q32E (page 77)
Determine the infinite limit.
\(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{\sqrt x }}{{{{\left( {x - 3} \right)}^5}}}\)
The limit tends to negative infinity.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) If\(F\left( x \right) = \frac{{5x}}{{\left( {1 + {x^2}} \right)}}\), \(F'\left( 2 \right)\) and use it to find an equation of the tangent line to the curve \(y = \frac{{5x}}{{1 + {x^2}}}\) at the point \(\left( {2,2} \right)\).
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.
For the function f whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{1}}} f\left( x \right)\)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ - }} f\left( x \right)\)
(c) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ + }} f\left( x \right)\)
(d) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{3}}} f\left( x \right)\)
(e) \(f\left( {\bf{3}} \right)\)
19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
29. \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 5} \right) = 1\)
19-32: Prove the statement using the \(\varepsilon ,{\rm{ }}\delta \) definition of a limit.
26. \(\mathop {\lim }\limits_{x \to 0} {x^3} = 0\)
Show that the length of the portion of any tangent line to
the asteroid \({x^{\frac{2}{3}}} + {y^{\frac{2}{3}}} = {a^{\frac{2}{3}}}\) cut off by the coordinate axes is constant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.