Chapter 2: Q32E (page 77)
11-34: Evaluate the limit, if it exists.
32. \(\mathop {\lim }\limits_{x \to - 4} \left( {\frac{{\sqrt {{x^2} + 9} - 5}}{{x + 4}}} \right)\)
Short Answer
The solution of the limit is \( - \frac{4}{5}\).
Chapter 2: Q32E (page 77)
11-34: Evaluate the limit, if it exists.
32. \(\mathop {\lim }\limits_{x \to - 4} \left( {\frac{{\sqrt {{x^2} + 9} - 5}}{{x + 4}}} \right)\)
The solution of the limit is \( - \frac{4}{5}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the sum of the \(x - \)and \(y - \)intercepts of any tangent line to the curve \(\sqrt x + \sqrt y = \sqrt c \)is equal to \(c.\)
The point \(P\left( {{\bf{1}},{\bf{0}}} \right)\) lies on the curve \(y = {\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)\).
a. If Qis the point \(\left( {x,{\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)} \right)\), find the slope of the secant line PQ (correct to four decimal places) for \(x = {\bf{2}}\), 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes appear to be approaching a limit?
b. Use a graph of the curve to explain why the slopes of the secant lines in part (a) are not close to the slope of the tangent line at P.
c. By choosing appropriate secant lines, estimate the slope of the tangent line at P.
Use equation 5 to find \(f'\left( a \right)\) at the given number \(a\).
\(f\left( x \right) = \frac{{\bf{1}}}{{\sqrt {{\bf{2}}x + {\bf{2}}} }}\), \(a = {\bf{1}}\)
(a) The curve with equation \({y^{\rm{2}}} = {x^{\rm{3}}} + {\rm{3}}{{\rm{x}}^{\rm{2}}}\) is called the Tschirnhausen cubic. Find an equation of the tangent line to this curve at the point \(\left( {{\rm{1,}} - {\rm{2}}} \right)\).
(b) At what points does this curve have a horizontal tangent?
(c) Illustrate parts (a) and (b) by graphing the curve and the tangent lines on a common screen.
If a rock is thrown upward on the Planet Mars with a velocity of 10 m/s, its height in meters t seconds later it is given by \(y = {\bf{10}}t - {\bf{1}}.{\bf{86}}{t^{\bf{2}}}\).
(a) Find the average velocity over the given time intervals:
(i) \(\left( {{\bf{1}},{\bf{2}}} \right)\)
(ii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{5}}} \right)\)
(iii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{1}}} \right)\)
(iv) \(\left( {{\bf{1}},{\bf{1}}.{\bf{01}}} \right)\)
(v) \(\left( {{\bf{1}},{\bf{1}}.{\bf{001}}} \right)\)
(b) Estimate the instantaneous velocity when \(t = {\bf{1}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.