Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

11-34: Evaluate the limit, if it exists.

32. \(\mathop {\lim }\limits_{x \to - 4} \left( {\frac{{\sqrt {{x^2} + 9} - 5}}{{x + 4}}} \right)\)

Short Answer

Expert verified

The solution of the limit is \( - \frac{4}{5}\).

Step by step solution

01

The limit laws

Let \(c\) be a constant and the limits \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists. Then

  1. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  2. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) - g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  3. \(\mathop {\lim }\limits_{x \to a} \left( {cf\left( x \right)} \right) = c\mathop {\lim }\limits_{x \to a} f\left( x \right)\)
  4. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right)g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  5. \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\,\,{\mathop{\rm if}\nolimits} \,\,\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).
  6. \(\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^n} = {\left( {\,\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right)^n}\), where \(n\) is a positive integer
  7. \(\mathop {\lim }\limits_{x \to a} \sqrt[n]{{f\left( x \right)}} = \,\sqrt[n]{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}\), where \(n\) is a positive integer

(If \(n\) is even, we assume that \(\,\mathop {\lim }\limits_{x \to a} f\left( x \right) > 0\).)

  1. \(\,\mathop {\lim }\limits_{x \to a} c = c\)
  2. \(\,\mathop {\lim }\limits_{x \to a} x = a\)
  3. \(\,\mathop {\lim }\limits_{x \to a} {x^n} = {a^n}\), where \(n\) is a positive integer
  4. \(\,\mathop {\lim }\limits_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}\), where \(n\) is a positive integer

(If \(n\) is even, we assume that \(a > 0\).)

02

 Step 2: Evaluate the limit 

Quotient law cannot be applied since the limit of the denominator is 0.

So, rationalize the numerator and evaluate the limit as shown below:

\(\begin{array}{c}\mathop {\lim }\limits_{x \to - 4} \frac{{\sqrt {{x^2} + 9} - 5}}{{x + 4}} &=& \mathop {\lim }\limits_{x \to - 4} \frac{{\left( {\sqrt {{x^2} + 9} - 5} \right) \cdot \left( {\sqrt {{x^2} + 9} + 5} \right)}}{{\left( {x + 4} \right) \cdot \left( {\sqrt {{x^2} + 9} + 5} \right)}}\\ &=& \mathop {\lim }\limits_{x \to - 4} \frac{{\left( {{x^2} + 9 - 25} \right)}}{{\left( {x + 4} \right) \cdot \left( {\sqrt {{x^2} + 9} + 5} \right)}}\\ &=& \mathop {\lim }\limits_{x \to - 4} \frac{{\left( {{x^2} - 16} \right)}}{{\left( {x + 4} \right) \cdot \left( {\sqrt {{x^2} + 9} + 5} \right)}}\\ &=& \mathop {\lim }\limits_{x \to - 4} \frac{{\left( {x + 4} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right) \cdot \left( {\sqrt {{x^2} + 9} + 5} \right)}}\end{array}\)

Solve further,

\(\begin{array}{c}\mathop {\lim }\limits_{x \to - 4} \frac{{\sqrt {{x^2} + 9} - 5}}{{x + 4}} &=& \mathop {\lim }\limits_{x \to - 4} \frac{{\left( {x - 4} \right)}}{{\left( {\sqrt {{x^2} + 9} + 5} \right)}}\\ &=& \frac{{\left( { - 4 - 4} \right)}}{{\left( {\sqrt {16 + 9} + 5} \right)}}\\ &=& \frac{{ - 8}}{{5 + 5}}\\ &=& - \frac{8}{{10}}\\ &=& - \frac{4}{5}\end{array}\)

Thus, the solution of the limit is \( - \frac{4}{5}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that the sum of the \(x - \)and \(y - \)intercepts of any tangent line to the curve \(\sqrt x + \sqrt y = \sqrt c \)is equal to \(c.\)

The point \(P\left( {{\bf{1}},{\bf{0}}} \right)\) lies on the curve \(y = {\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)\).

a. If Qis the point \(\left( {x,{\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)} \right)\), find the slope of the secant line PQ (correct to four decimal places) for \(x = {\bf{2}}\), 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes appear to be approaching a limit?

b. Use a graph of the curve to explain why the slopes of the secant lines in part (a) are not close to the slope of the tangent line at P.

c. By choosing appropriate secant lines, estimate the slope of the tangent line at P.

Use equation 5 to find \(f'\left( a \right)\) at the given number \(a\).

\(f\left( x \right) = \frac{{\bf{1}}}{{\sqrt {{\bf{2}}x + {\bf{2}}} }}\), \(a = {\bf{1}}\)

(a) The curve with equation \({y^{\rm{2}}} = {x^{\rm{3}}} + {\rm{3}}{{\rm{x}}^{\rm{2}}}\) is called the Tschirnhausen cubic. Find an equation of the tangent line to this curve at the point \(\left( {{\rm{1,}} - {\rm{2}}} \right)\).

(b) At what points does this curve have a horizontal tangent?

(c) Illustrate parts (a) and (b) by graphing the curve and the tangent lines on a common screen.

If a rock is thrown upward on the Planet Mars with a velocity of 10 m/s, its height in meters t seconds later it is given by \(y = {\bf{10}}t - {\bf{1}}.{\bf{86}}{t^{\bf{2}}}\).

(a) Find the average velocity over the given time intervals:

(i) \(\left( {{\bf{1}},{\bf{2}}} \right)\)

(ii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{5}}} \right)\)

(iii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{1}}} \right)\)

(iv) \(\left( {{\bf{1}},{\bf{1}}.{\bf{01}}} \right)\)

(v) \(\left( {{\bf{1}},{\bf{1}}.{\bf{001}}} \right)\)

(b) Estimate the instantaneous velocity when \(t = {\bf{1}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free