Chapter 2: Q31E (page 77)
Find the limit or show that it does not exist.
31. \(\mathop {lim}\limits_{x \to \infty } \left( {\sqrt {{x^2} + ax} - \sqrt {{x^2} + bx} } \right)\)
Short Answer
The value of the limit is \(\frac{{a - b}}{2}\)
Chapter 2: Q31E (page 77)
Find the limit or show that it does not exist.
31. \(\mathop {lim}\limits_{x \to \infty } \left( {\sqrt {{x^2} + ax} - \sqrt {{x^2} + bx} } \right)\)
The value of the limit is \(\frac{{a - b}}{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for free41-42 Show that f is continuous on \(\left( { - \infty ,\infty } \right)\).
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{\bf{1}} - {x^{\bf{2}}}}&{{\bf{if}}\,\,x \le {\bf{1}}}\\{{\bf{ln}}\,x}&{{\bf{if}}\,\,\,x > {\bf{1}}}\end{array}} \right.\)
Use equation 5 to find \(f'\left( a \right)\) at the given number \(a\).
\(f\left( x \right) = \frac{{\bf{1}}}{{\sqrt {{\bf{2}}x + {\bf{2}}} }}\), \(a = {\bf{1}}\)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
24. \(\mathop {{\bf{lim}}}\limits_{x \to a} c = c\)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
23. \(\mathop {{\bf{lim}}}\limits_{x \to a} x = a\)
\(y = c{x^{\rm{2}}}\), \({x^{\rm{2}}} + {\rm{2}}{y^{\rm{2}}} = k\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.