Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

11-34: Evaluate the limit, if it exists.

31. \(\mathop {\lim }\limits_{t \to 0} \left( {\frac{1}{{t\sqrt {1 + t} }} - \frac{1}{t}} \right)\)

Short Answer

Expert verified

The solution of the limit is \( - \frac{1}{2}\).

Step by step solution

01

The limit laws

Let \(c\) be a constant and the limits \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists. Then

  1. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  2. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) - g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  3. \(\mathop {\lim }\limits_{x \to a} \left( {cf\left( x \right)} \right) = c\mathop {\lim }\limits_{x \to a} f\left( x \right)\)
  4. \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right)g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\)
  5. \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\,\,{\mathop{\rm if}\nolimits} \,\,\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).
  6. \(\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^n} = {\left( {\,\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right)^n}\), where \(n\) is a positive integer
  7. \(\mathop {\lim }\limits_{x \to a} \sqrt[n]{{f\left( x \right)}} = \,\sqrt[n]{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}\), where \(n\) is a positive integer

(If \(n\) is even, we assume that \(\,\mathop {\lim }\limits_{x \to a} f\left( x \right) > 0\).)

  1. \(\,\mathop {\lim }\limits_{x \to a} c = c\)
  2. \(\,\mathop {\lim }\limits_{x \to a} x = a\)
  3. \(\,\mathop {\lim }\limits_{x \to a} {x^n} = {a^n}\), where \(n\) is a positive integer
  4. \(\,\mathop {\lim }\limits_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}\), where \(n\) is a positive integer

(If \(n\) is even, we assume that \(a > 0\).)

02

Evaluate the limit

Quotient law cannot be applied since the limit of the denominator is 0.

So, rationalize the numerator and evaluate the limit as shown below:

\(\begin{array}{c}\mathop {\lim }\limits_{t \to 0} \left( {\frac{1}{{t\sqrt {1 + t} }} - \frac{1}{t}} \right) &=& \mathop {\lim }\limits_{t \to 0} \frac{{1 - \sqrt {1 + t} }}{{t\sqrt {1 + t} }} \cdot \frac{{\left( {1 + \sqrt {1 + t} } \right)}}{{\left( {1 + \sqrt {1 + t} } \right)}}\\ &=& \mathop {\lim }\limits_{t \to 0} \frac{{\left( {1 - \sqrt {1 + t} } \right)\left( {1 + \sqrt {1 + t} } \right)}}{{t\sqrt {1 + t} \left( {1 + \sqrt {1 + t} } \right)}}\\ &=& \mathop {\lim }\limits_{t \to 0} \frac{{1 - \left( {1 + t} \right)}}{{t\sqrt {1 + t} \left( {1 + \sqrt {1 + t} } \right)}}\end{array}\)

Solve further,

\(\begin{array}{c}\mathop {\lim }\limits_{t \to 0} \left( {\frac{1}{{t\sqrt {1 + t} }} - \frac{1}{t}} \right) &=& \mathop {\lim }\limits_{t \to 0} \frac{{ - t}}{{t\sqrt {1 + t} \left( {1 + \sqrt {1 + t} } \right)}}\\ &=& \mathop {\lim }\limits_{t \to 0} \frac{{ - 1}}{{\sqrt {1 + t} \left( {1 + \sqrt {1 + t} } \right)}}\\ &=& \frac{{ - 1}}{{\sqrt {1 + 0} \left( {1 + \sqrt {1 + 0} } \right)}}\\ &=& - \frac{1}{{1\left( 2 \right)}}\\ &=& - \frac{1}{2}\end{array}\)

Thus, the solution of the limit is \( - \frac{1}{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free