Chapter 2: Q31E (page 77)
11-34: Evaluate the limit, if it exists.
31. \(\mathop {\lim }\limits_{t \to 0} \left( {\frac{1}{{t\sqrt {1 + t} }} - \frac{1}{t}} \right)\)
Short Answer
The solution of the limit is \( - \frac{1}{2}\).
Chapter 2: Q31E (page 77)
11-34: Evaluate the limit, if it exists.
31. \(\mathop {\lim }\limits_{t \to 0} \left( {\frac{1}{{t\sqrt {1 + t} }} - \frac{1}{t}} \right)\)
The solution of the limit is \( - \frac{1}{2}\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.
22. \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{1}}.{\bf{5}}} \frac{{{\bf{9}} - {\bf{4}}{x^{\bf{2}}}}}{{{\bf{3}} + {\bf{2}}x}} = {\bf{6}}\)
Use equation 5 to find \(f'\left( a \right)\) at the given number \(a\).
\(f\left( x \right) = \frac{{\bf{1}}}{{\sqrt {{\bf{2}}x + {\bf{2}}} }}\), \(a = {\bf{1}}\)
Find \(f'\left( a \right)\).
\(f\left( t \right) = {t^3} - 3t\)
(a). Prove Theorem 4, part 3.
(b). Prove Theorem 4, part 5.
Sketch the graph of the function f for which \(f\left( {\bf{0}} \right) = {\bf{0}}\), \(f'\left( {\bf{0}} \right) = {\bf{3}}\), \(f'\left( {\bf{1}} \right) = {\bf{0}}\), and \(f'\left( {\bf{2}} \right) = - {\bf{1}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.