Chapter 2: Q30E (page 77)
Determine the infinite limit.
\(\mathop {\lim }\limits_{x \to {5^ - }} \frac{{x + 1}}{{x - 5}}\)
Short Answer
The infinite limit is \(\mathop {\lim }\limits_{x \to {5^ - }} \frac{{x + 1}}{{x - 5}} = - \infty \).
Chapter 2: Q30E (page 77)
Determine the infinite limit.
\(\mathop {\lim }\limits_{x \to {5^ - }} \frac{{x + 1}}{{x - 5}}\)
The infinite limit is \(\mathop {\lim }\limits_{x \to {5^ - }} \frac{{x + 1}}{{x - 5}} = - \infty \).
All the tools & learning materials you need for study success - in one app.
Get started for freeDescribe the intervals on which each function f is continuous.
19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.
22. \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{1}}.{\bf{5}}} \frac{{{\bf{9}} - {\bf{4}}{x^{\bf{2}}}}}{{{\bf{3}} + {\bf{2}}x}} = {\bf{6}}\)
If a rock is thrown upward on the Planet Mars with a velocity of 10 m/s, its height in meters t seconds later it is given by \(y = {\bf{10}}t - {\bf{1}}.{\bf{86}}{t^{\bf{2}}}\).
(a) Find the average velocity over the given time intervals:
(i) \(\left( {{\bf{1}},{\bf{2}}} \right)\)
(ii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{5}}} \right)\)
(iii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{1}}} \right)\)
(iv) \(\left( {{\bf{1}},{\bf{1}}.{\bf{01}}} \right)\)
(v) \(\left( {{\bf{1}},{\bf{1}}.{\bf{001}}} \right)\)
(b) Estimate the instantaneous velocity when \(t = {\bf{1}}\).
Find \(f'\left( a \right)\).
\(f\left( x \right) = \frac{x}{{{\bf{1}} - {\bf{4}}x}}\)
Each limit represents the derivative of some function \(f\) at some number \(a\). State such an \(f\) and \(a\) in each case.
\(\mathop {{\rm{lim}}}\limits_{\theta \to \pi /6} \frac{{{\rm{sin}}\theta - \frac{1}{2}}}{{\theta - \frac{\pi }{6}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.