Chapter 2: Q2E (page 77)
Use the given graph of \(f\) to find a number \(\delta \) such that if \(0 < \left| {x - 3} \right| < d\), then \(\left| {f\left( x \right) - 2} \right| < 0.5\)
Short Answer
The number is \(0.4\).
Chapter 2: Q2E (page 77)
Use the given graph of \(f\) to find a number \(\delta \) such that if \(0 < \left| {x - 3} \right| < d\), then \(\left| {f\left( x \right) - 2} \right| < 0.5\)
The number is \(0.4\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEach limit represents the derivative of some function f at some number a. State such as an f and a in each case.
\(\mathop {{\bf{lim}}}\limits_{x \to \frac{{\bf{1}}}{{\bf{4}}}} \frac{{\frac{{\bf{1}}}{x} - {\bf{4}}}}{{x - \frac{{\bf{1}}}{{\bf{4}}}}}\)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
24. \(\mathop {{\bf{lim}}}\limits_{x \to a} c = c\)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.
21. \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{4}}} \frac{{{x^{\bf{2}}} - {\bf{2}}x - {\bf{8}}}}{{x - {\bf{4}}}} = {\bf{6}}\)
Prove that \(f\) is continuous at \(a\) if and only if\(\mathop {\lim }\limits_{h \to 0} f\left( {a + h} \right) = f\left( a \right)\).
Find the values of a and b that make f continuous everywhere.
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.