Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The graphs of \(f\) and \(g\) are given. Use them to evaluate each

limit, if it exists. If the limit does not exist, explain why.

(a) \(\mathop {lim}\limits_{x \to 2} \left( {f\left( x \right) + g\left( x \right)} \right)\)

(b) \(\mathop {lim}\limits_{x \to 0} \left( {f\left( x \right) - g\left( x \right)} \right)\)

(c) \(\mathop {lim}\limits_{x \to - 1} \left( {f\left( x \right)g\left( x \right)} \right)\)

(d) \(\mathop {lim}\limits_{x \to 3} \frac{{f\left( x \right)}}{{g\left( x \right)}}\)

(e) \(\mathop {lim}\limits_{x \to 2} \left( {{x^2}f\left( x \right)} \right)\)

(f) \(f\left( { - {\bf{1}}} \right) + \mathop {lim}\limits_{x \to - {\bf{1}}} g\left( x \right)\)

Short Answer

Expert verified

(a) \(\mathop {lim}\limits_{x \to 2} \left( {f\left( x \right) + g\left( x \right)} \right) = 1\)

(b) \(\mathop {lim}\limits_{x \to 0} \left( {f\left( x \right) - g\left( x \right)} \right) = {\rm{does}}\;{\rm{not}}\;{\rm{exist}}\)

(c) \(\mathop {lim}\limits_{x \to 1} \left( {f\left( x \right)g\left( x \right)} \right) = 2\)

(d) \(\mathop {lim}\limits_{x \to 3} \frac{{f\left( x \right)}}{{g\left( x \right)}} = {\rm{does}}\;{\rm{not}}\;{\rm{exist}}\)

(e) \(\mathop {lim}\limits_{x \to 2} \left( {{x^2}f\left( x \right)} \right) = - 4\)

(f) \(f\left( { - 1} \right)\mathop {lim}\limits_{x \to - 1} g\left( x \right) = {\rm{does}}\;{\rm{not}}\;{\rm{exist}}\)

Step by step solution

01

Write the limits of function

It is observed from the graph that, \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = - 1\), \(\mathop {\lim }\limits_{x \to 2} g\left( x \right) = 2\), \(\mathop {\lim }\limits_{x \to 0} g\left( x \right) = {\rm{does}}\;{\rm{not}}\,{\rm{exist}}\), \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = 1\), \(\mathop {\lim }\limits_{x \to - 1} g\left( x \right) = 2\), \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 1\) and \(\mathop {\lim }\limits_{x \to 3} g\left( x \right) = 0\).

02

(a) Step 2: Apply Sum laws

According the sum law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

Apply the law in given function and substitute the obtained values as:

\(\begin{array}{c}\mathop {lim}\limits_{x \to 2} \left( {f\left( x \right) + g\left( x \right)} \right) &=& \mathop {lim}\limits_{x \to 2} f\left( x \right) + \mathop {lim}\limits_{x \to 2} \left( {g\left( x \right)} \right)\\ &=& - 1 + 2\\ &=& 1\end{array}\)

Thus, the value of the limit is 1.

03

(b) Step 3: Apply Difference laws

According the Difference law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) - g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

From the graph, it is observed that \(\mathop {\lim }\limits_{x \to 0} g\left( x \right)\) does not exist. This implies that, difference law cannot be applied.

Therefore, \(\mathop {lim}\limits_{x \to 0} \left( {f\left( x \right) - g\left( x \right)} \right)\) does not exist.

04

(c) Step 4: Apply Product laws

According the product law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

Apply the law and use the values as shown below:

\(\begin{array}{c}\mathop {lim}\limits_{x \to 1} \left( {f\left( x \right)g\left( x \right)} \right) &=& \mathop {lim}\limits_{x \to 1} f\left( x \right) \cdot \mathop {lim}\limits_{x \to 1} g\left( x \right)\\ &=& 1 \cdot 2\\ &=& 2\end{array}\)

Thus, the value is 2.

05

(d) Step 5: Apply Quotient laws

According the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

We cannot apply quotient rule because the value of \(\mathop {\lim }\limits_{x \to 3} g\left( x \right) = 0\). As, \(\mathop {lim}\limits_{x \to {3^ - }} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \infty \) and \(\mathop {lim}\limits_{x \to {3^ + }} \frac{{f\left( x \right)}}{{g\left( x \right)}} = - \infty \).

This implies that \(\mathop {lim}\limits_{x \to 3} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) does not exist.

06

(e) Step 6: Apply Product laws

According the product law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

Apply the law as:

\(\mathop {lim}\limits_{x \to 2} \left( {{x^2}f\left( x \right)} \right) = \mathop {lim}\limits_{x \to 2} \left( {{x^2}} \right) \cdot \mathop {lim}\limits_{x \to 2} f\left( x \right)\)

07

Apply limit laws

According to the law, \(\mathop {\lim }\limits_{x \to a} c = c\), and \(\mathop {\lim }\limits_{x \to a} {x^n} = {a^n}\)where \(n\) is positive integer.

Apply the law and use the values as;

\(\begin{array}{c}\mathop {lim}\limits_{x \to 2} \left( {{x^2}} \right) \cdot \mathop {lim}\limits_{x \to 2} f\left( x \right) &=& {\left( 2 \right)^2} \cdot \left( { - 1} \right)\\ &=& 4 \cdot \left( { - 1} \right)\\ &=& - 4\end{array}\)

Thus, the value of the limit is \( - 4\).

08

(f) Step 8: Apply limit laws

From the graph the value of \(f\left( { - 1} \right)\) is not defined.

Therefore, the value of \(f\left( { - 1} \right) + \mathop {lim}\limits_{x \to - 1} g\left( x \right)\) does not exists.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each limit represents the derivative of some function f at some number a. State such an f and a in each case.

\(\mathop {{\bf{lim}}}\limits_{h \to {\bf{0}}} \frac{{\sqrt {{\bf{9}} + h} - {\bf{3}}}}{h}\)

Each limit represents the derivative of some function \(f\) at some number \(a\). State such an \(f\) and \(a\) in each case.

\(\mathop {{\rm{lim}}}\limits_{\theta \to \pi /6} \frac{{{\rm{sin}}\theta - \frac{1}{2}}}{{\theta - \frac{\pi }{6}}}\)

Explain what it means to say that

\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{1}}^ - }} f\left( x \right) = {\bf{3}}\)and \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{1}}^ + }} f\left( x \right) = {\bf{7}}\)

In this situation, is it possible that\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{1}}} f\left( x \right)\) exists? Explain.

43-45 Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Sketch the graph of f?

45. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {\bf{2}}}&{{\bf{if}}\,\,\,x < {\bf{0}}}\\{{e^x}}&{{\bf{if}}\,\,\,{\bf{0}} \le x \le {\bf{1}}}\\{{\bf{2}} - x}&{{\bf{if}}\,\,\,x > {\bf{1}}}\end{array}} \right.\)

A roast turkey is taken from an oven when its temperature has reached \({\bf{185}}\;^\circ {\bf{F}}\) and is placed on a table in a room where the temperature \({\bf{75}}\;^\circ {\bf{F}}\). The graph shows how the temperature of the turkey decreases and eventually approaches room temperature. By measuring the slope of the tangent, estimate the rate of change of the temperature after an hour.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free