Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the limit or show that it does not exist.

26. \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}}\)

Short Answer

Expert verified

The value is \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} = 2\).

Step by step solution

01

Simply the given limit

Dive the rational function in the given limit,\(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}}\), by\({x^3}\)and simplify as shown below:

\(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + 4{x^6}} /{x^3}}}{{\left( {2 - {x^3}} \right)/{x^3}}}\)

02

Simply further

Perform the division in numerator and denominator and apply necessary limit laws.

As \({x^3} = - \sqrt {{x^6}} \), for \(x > 0\), division can be performed in the square root by negating the numerator. So, simplify further as shown below:

\(\begin{aligned}\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} &= \mathop {\lim }\limits_{x \to \infty } \frac{{ - \sqrt {\left( {1 + 4{x^6}} \right)/{x^6}} }}{{\left( {2 - {x^3}} \right)/{x^3}}}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{ - \sqrt {1/{x^6} + 4} }}{{2/{x^3} - 1}}\\ &= \frac{{\mathop {\lim }\limits_{x \to \infty } \, - \sqrt {1/{x^6} + 4} }}{{\mathop {\lim }\limits_{x \to \infty } \,\left( {2/{x^3} - 1} \right)}}\\ &= \frac{{ - \sqrt {\mathop {\lim }\limits_{x \to \infty } \left( {1/{x^6}} \right) + \mathop {\lim }\limits_{x \to \infty } 4} }}{{\mathop {\lim }\limits_{x \to \infty } \left( {2/{x^3}} \right) - \mathop {\lim }\limits_{x \to \infty } 1}}\end{aligned}\).

03

Finally, apply the limit

On applying the limit to the above equation and simplifying, we get:

\(\begin{aligned}\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} &= \frac{{ - \sqrt {\mathop {\lim }\limits_{x \to \infty } \left( {1/{x^6}} \right) + \mathop {\lim }\limits_{x \to \infty } 4} }}{{\mathop {\lim }\limits_{x \to \infty } \left( {2/{x^3}} \right) - \mathop {\lim }\limits_{x \to \infty } 1}}\\ &= \frac{{ - \sqrt {0 + 4} }}{{ - 1}}\\ &= \frac{{ - 2}}{{ - 1}}\\ &= 2\end{aligned}\)

Thus, \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} = 2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) The curve with equation\({\rm{2}}{y^{\rm{3}}} + {y^{\rm{2}}} - {y^{\rm{5}}} = {x^{\rm{4}}} - {\rm{2}}{{\rm{x}}^{\rm{3}}} + {x^{\rm{2}}}\)has been likened to a bouncing wagon. Use a computer algebra system to graph this curve and discover why.

(b) At how many points does this curve have horizontal tangent lines? Find the \(x\)-coordinates of these points.

Show by implicit differentiation that the tangent to the ellipse \(\frac{{{x^{\rm{2}}}}}{{{a^{\rm{2}}}}} + \frac{{{y^{\rm{2}}}}}{{{b^{\rm{2}}}}} = {\rm{1}}\) at the point \(\left( {{x_{\rm{0}}},{y_{\rm{0}}}} \right)\)is \(\frac{{{x_{\rm{0}}}x}}{{{a^{\rm{2}}}}} + \frac{{{y_{\rm{0}}}y}}{{{b^{\rm{2}}}}} = {\rm{1}}\).

\({x^{\rm{2}}} + {y^{\rm{2}}} = ax\), \({x^{\rm{2}}} + {y^{\rm{2}}} = by\).

Show that the length of the portion of any tangent line to

the asteroid \({x^{\frac{2}{3}}} + {y^{\frac{2}{3}}} = {a^{\frac{2}{3}}}\) cut off by the coordinate axes is constant.

The point \(P\left( {{\bf{0}}.{\bf{5}},{\bf{0}}} \right)\) lies on the curve \(y = {\bf{cos}}\pi x\).

(a) If Q is the point \(\left( {x,{\bf{cos}}\pi x} \right)\), find the slope of the secant line PQ (correct to six decimal places) for the following values of x:

(i) 0 (ii) 0.4 (iii) 0.49 (iv) 0.499 (v) 1 (vi) 0.6 (vii) 0.51 (viii) 0.501

(b) Using the results of part (a), guess the value of the slope of tangent line to the curve at \(P\left( {{\bf{0}}.{\bf{5}},{\bf{0}}} \right)\).

(c) Using the slope from part (b), find an equation of the tangent line to the curve at \(P\left( {{\bf{0}}.{\bf{5}},{\bf{0}}} \right)\).

(d) Sketch the curve, two of the secant lines, and the tangent line.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free