Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(f'\left( a \right)\).

\(f\left( x \right) = \frac{x}{{{\bf{1}} - {\bf{4}}x}}\)

Short Answer

Expert verified

The value of \(f'\left( a \right)\) is \(\frac{1}{{{{\left( {1 - 4a} \right)}^2}}}\).

Step by step solution

01

Use the definition 4

The derivative of a function at a number \(a\), denoted by \(f'\left( a \right)\) can be obtained using the formula given below:

\(f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\)

02

The derivative of the given function

Substitute the values in the above formula and solve it as follows:

\(\begin{aligned}f'\left( a \right) &= \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{a + h}}{{1 - 4\left( {a + h} \right)}} - \frac{a}{{1 - 4a}}}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{\left( {a + h} \right)\left( {1 - 4a} \right) - a\left( {1 - 4\left( {a + h} \right)} \right)}}{{\left( {1 - 4a} \right)\left( {1 - 4\left( {a + h} \right)} \right)}}}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{a - 4{a^2} + h - 4ah - a + 4{a^2} + 4ah}}{{h\left( {1 - 4a} \right)\left( {1 - 4\left( {a + h} \right)} \right)}}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{h}{{h\left( {1 - 4a} \right)\left( {1 - 4\left( {a + h} \right)} \right)}}\end{aligned}\)

Solve the above equation further,

\(\begin{aligned}f'\left( a \right) &= \mathop {\lim }\limits_{h \to 0} \frac{1}{{\left( {1 - 4a} \right)\left( {1 - 4\left( {a + h} \right)} \right)}}\\ &= \frac{1}{{\left( {1 - 4\left( {a + 0} \right)} \right)\left( {1 - 4a} \right)}}\\ &= \frac{1}{{\left( {1 - 4a} \right)\left( {1 - 4a} \right)}}\\ &= \frac{1}{{{{\left( {1 - 4a} \right)}^2}}}\end{aligned}\)

Thus, the value of \(f'\left( a \right)\) is \(\frac{1}{{{{\left( {1 - 4a} \right)}^2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sketch the graph of the function f for which \(f\left( {\bf{0}} \right) = {\bf{0}}\), \(f'\left( {\bf{0}} \right) = {\bf{3}}\), \(f'\left( {\bf{1}} \right) = {\bf{0}}\), and \(f'\left( {\bf{2}} \right) = - {\bf{1}}\).

The table shows the position of a motorcyclist after accelerating from rest.

t(seconds)

0

1

2

3

4

5

6

s(feet)

0

4.9

20.6

46.5

79.2

124.8

176.7

(a) Find the average velocity for each time period:

(i) \(\left( {{\bf{2}},{\bf{4}}} \right)\) (ii) \(\left( {{\bf{3}},{\bf{4}}} \right)\) (iii) \(\left( {{\bf{4}},{\bf{5}}} \right)\) (iv) \(\left( {{\bf{4}},{\bf{6}}} \right)\)

(b) Use the graph of s as a function of t to estimate the instantaneous velocity when \(t = {\bf{3}}\).

Show that the length of the portion of any tangent line to

the asteroid \({x^{\frac{2}{3}}} + {y^{\frac{2}{3}}} = {a^{\frac{2}{3}}}\) cut off by the coordinate axes is constant.

Find the values of a and b that make f continuous everywhere.

\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)

For the function f whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.

(a)\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{1}}} f\left( x \right)\)

(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ - }} f\left( x \right)\)

(c) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ + }} f\left( x \right)\)

(d) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{3}}} f\left( x \right)\)

(e) \(f\left( {\bf{3}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free