Chapter 2: Q26E (page 77)
Find \(f'\left( a \right)\).
\(f\left( x \right) = \frac{x}{{{\bf{1}} - {\bf{4}}x}}\)
Short Answer
The value of \(f'\left( a \right)\) is \(\frac{1}{{{{\left( {1 - 4a} \right)}^2}}}\).
Chapter 2: Q26E (page 77)
Find \(f'\left( a \right)\).
\(f\left( x \right) = \frac{x}{{{\bf{1}} - {\bf{4}}x}}\)
The value of \(f'\left( a \right)\) is \(\frac{1}{{{{\left( {1 - 4a} \right)}^2}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of the function f for which \(f\left( {\bf{0}} \right) = {\bf{0}}\), \(f'\left( {\bf{0}} \right) = {\bf{3}}\), \(f'\left( {\bf{1}} \right) = {\bf{0}}\), and \(f'\left( {\bf{2}} \right) = - {\bf{1}}\).
The table shows the position of a motorcyclist after accelerating from rest.
t(seconds) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
s(feet) | 0 | 4.9 | 20.6 | 46.5 | 79.2 | 124.8 | 176.7 |
(a) Find the average velocity for each time period:
(i) \(\left( {{\bf{2}},{\bf{4}}} \right)\) (ii) \(\left( {{\bf{3}},{\bf{4}}} \right)\) (iii) \(\left( {{\bf{4}},{\bf{5}}} \right)\) (iv) \(\left( {{\bf{4}},{\bf{6}}} \right)\)
(b) Use the graph of s as a function of t to estimate the instantaneous velocity when \(t = {\bf{3}}\).
Show that the length of the portion of any tangent line to
the asteroid \({x^{\frac{2}{3}}} + {y^{\frac{2}{3}}} = {a^{\frac{2}{3}}}\) cut off by the coordinate axes is constant.
Find the values of a and b that make f continuous everywhere.
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)
For the function f whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{1}}} f\left( x \right)\)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ - }} f\left( x \right)\)
(c) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{3}}^ + }} f\left( x \right)\)
(d) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{3}}} f\left( x \right)\)
(e) \(f\left( {\bf{3}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.