Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the limit or show that it does not exist.

25. \(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}}\)

Short Answer

Expert verified

The value is \(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} = - 2\).

Step by step solution

01

Simply the given limit

Dive the rational function in the given limit,\(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2{x^3}}}\), by\({x^3}\)and simplify as shown below:

\(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} /{x^3}}}{{\left( {2 - {x^3}} \right)/{x^3}}}\)

02

Simply further

Perform the division in numerator and denominator and apply necessary limit laws.

As\({x^3} = \sqrt {{x^6}} \), for\(x > 0\), division can be performed in the square root, positively. So, simplify further as shown below:

\(\begin{aligned}\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} &= \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {\left( {1 + 4{x^6}} \right)/{x^6}} }}{{\left( {2 - {x^3}} \right)/{x^3}}}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1/{x^6} + 4} }}{{2/{x^3} - 1}}\\ &= \frac{{\mathop {\lim }\limits_{x \to \infty } \sqrt {1/{x^6} + 4} }}{{\mathop {\lim }\limits_{x \to \infty } \left( {2/{x^3} - 1} \right)}}\\ &= \frac{{\sqrt {\mathop {\lim }\limits_{x \to \infty } \left( {1/{x^6}} \right) + \mathop {\lim }\limits_{x \to \infty } 4} }}{{\mathop {\lim }\limits_{x \to \infty } \left( {2/{x^3}} \right) - \mathop {\lim }\limits_{x \to \infty } 1}}\end{aligned}\).

03

Finally, apply the limit

On applying the limit to the above equation, and simplifying we get:

\(\begin{aligned}\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} &= \frac{{\sqrt {\mathop {\lim }\limits_{x \to \infty } \left( {1/{x^6}} \right) + \mathop {\lim }\limits_{x \to \infty } 4} }}{{\mathop {\lim }\limits_{x \to \infty } \left( {2/{x^3}} \right) - \mathop {\lim }\limits_{x \to \infty } 1}}\\ &= \frac{{\sqrt {0 + 4} }}{{ - 1}}\\ &= \frac{2}{{ - 1}}\\ &= - 2\end{aligned}\)

Thus, \(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + 4{x^6}} }}{{2 - {x^3}}} = - 2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free