Chapter 2: Q25E (page 77)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
25. \(\mathop {{\bf{lim}}}\limits_{x \to 0} {x^{\bf{2}}} = {\bf{0}}\)
Short Answer
The given limit is true.
Chapter 2: Q25E (page 77)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
25. \(\mathop {{\bf{lim}}}\limits_{x \to 0} {x^{\bf{2}}} = {\bf{0}}\)
The given limit is true.
All the tools & learning materials you need for study success - in one app.
Get started for free\({x^{\rm{2}}} + {y^{\rm{2}}} = {r^{\rm{2}}}\), \(ax + by = {\rm{0}}\).
19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
31. \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} - 1} \right) = 3\)
For the function h whose graph is given, state the value of each quantity if it exists. If it does not exist, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{3}}^ - }} h\left( x \right)\)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to - {{\bf{3}}^ + }} h\left( x \right)\)
(c) \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} h\left( x \right)\)
(d) \(h\left( { - {\bf{3}}} \right)\)
(e) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{0}}^ - }} h\left( x \right)\)
(f) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{0}}^ + }} h\left( x \right)\)
(g) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{0}}} h\left( x \right)\)
(h) \(h\left( {\bf{0}} \right)\)
(i) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} h\left( x \right)\)
(j) \(h\left( {\bf{2}} \right)\)
(k) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{5}}^ + }} h\left( x \right)\)
(l) \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{5}}^ - }} h\left( x \right)\)
The deck of a bridge is suspended 275 feet above a river. If a pebble falls of the side of the bridge, the height, in feet of the pebble above the water surface after t seconds is given by\(y = {\bf{275}} - {\bf{16}}{t^{\bf{2}}}\)
(a) Find the average velocity of the pebble for the time period beginning when\(t = {\bf{4}}\)and lasting
(i) 0.1 seconds (ii) 0.05 seconds (iii) 0.01 seconds
(b) Estimate the instaneous velocity of pebble after 4 seconds
Each limit represents the derivative of some function f at some number a. State such as an f and a in each case.
\(\mathop {{\bf{lim}}}\limits_{x \to \frac{{\bf{1}}}{{\bf{4}}}} \frac{{\frac{{\bf{1}}}{x} - {\bf{4}}}}{{x - \frac{{\bf{1}}}{{\bf{4}}}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.