Perform the division in numerator and denominator and apply necessary limit laws.
As \(t = \sqrt {{t^2}} \), for \(t > 0\), division can be performed in the square root positively.
So, simplify further as shown below:
\(\begin{aligned}{c}\mathop {\lim }\limits_{t \to \infty } \frac{{t + 3}}{{\sqrt {2{t^2} - 1} }} &= \mathop {\lim }\limits_{t \to \infty } \frac{{\left( {t + 3} \right)/t}}{{\sqrt {2{t^2} - 1} /t}}\\ &= \mathop {\lim }\limits_{t \to \infty } \frac{{\left( {t + 3} \right)/t}}{{\sqrt {2{t^2} - 1/{t^2}} }}\\ &= \mathop {\lim }\limits_{t \to \infty } \frac{{1 + 3/t}}{{\sqrt {2 - 1/{t^2}} }}\\ &= \frac{{\mathop {\lim }\limits_{t \to \infty } \left( {1 + 3/t} \right)}}{{\sqrt {\mathop {\lim }\limits_{t \to \infty } \left( {2 - 1/{t^2}} \right)} }}\\ &= \frac{{\mathop {\lim }\limits_{t \to \infty } 1 + \mathop {\lim }\limits_{t \to \infty } \left( {3/t} \right)}}{{\sqrt {\mathop {\lim }\limits_{t \to \infty } 2 - \mathop {\lim }\limits_{t \to \infty } \left( {1/{t^2}} \right)} }}\end{aligned}\).