Chapter 2: Q24E (page 77)
Find \(f'\left( a \right)\).
\(f\left( t \right) = {t^3} - 3t\)
Short Answer
The value of \(f'\left( a \right)\) is \(3{a^2} - 3\).
Chapter 2: Q24E (page 77)
Find \(f'\left( a \right)\).
\(f\left( t \right) = {t^3} - 3t\)
The value of \(f'\left( a \right)\) is \(3{a^2} - 3\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.
20. \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{5}}} \left( {\frac{{\bf{3}}}{{\bf{2}}}x - \frac{{\bf{1}}}{{\bf{2}}}} \right) = {\bf{7}}\)
Explain the meaning of each of the following.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} f\left( x \right) = \infty \)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{4}}^ + }} f\left( x \right) = - \infty \)
(a) The van der Waals equation for \({\rm{n}}\) moles of a gas is \(\left( {P + \frac{{{n^{\rm{2}}}a}}{{{V^{\rm{2}}}}}} \right)\left( {V - nb} \right) = nRT\) where \(P\)is the pressure,\(V\) is the volume, and\(T\) is the temperature of the gas. The constant\(R\) is the universal gas constant and\(a\)and\(b\)are positive constants that are characteristic of a particular gas. If \(T\) remains constant, use implicit differentiation to find\(\frac{{dV}}{{dP}}\).
(b) Find the rate of change of volume with respect to pressure of \({\rm{1}}\) mole of carbon dioxide at a volume of \(V = {\rm{10}}L\) and a pressure of \(P = {\rm{2}}{\rm{.5atm}}\). Use \({\rm{a}} = {\rm{3}}{\rm{.592}}{{\rm{L}}^{\rm{2}}}{\rm{ - atm}}/{\rm{mol}}{{\rm{e}}^{\rm{2}}}\)and \(b = {\rm{0}}{\rm{.04267}}L/mole\).
Each limit represents the derivative of some function f at some number a. State such as an f and a in each case.
\(\mathop {{\bf{lim}}}\limits_{h \to {\bf{0}}} \frac{{{\bf{tan}}\left( {\frac{\pi }{{\bf{4}}} + h} \right) - {\bf{1}}}}{h}\)
(a) The curve with equation \({y^{\rm{2}}} = {x^{\rm{3}}} + {\rm{3}}{{\rm{x}}^{\rm{2}}}\) is called the Tschirnhausen cubic. Find an equation of the tangent line to this curve at the point \(\left( {{\rm{1,}} - {\rm{2}}} \right)\).
(b) At what points does this curve have a horizontal tangent?
(c) Illustrate parts (a) and (b) by graphing the curve and the tangent lines on a common screen.
What do you think about this solution?
We value your feedback to improve our textbook solutions.