Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the limit if it exists.

\(\mathop {{\bf{lim}}}\limits_{h \to {\bf{0}}} \frac{{\sqrt {{\bf{9}} + h} - {\bf{3}}}}{h}\)

Short Answer

Expert verified

The value of the limit is \(\frac{1}{6}\).

Step by step solution

01

Simplify the limit using factorization

Rationalize the expression \(\mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {9 + h} - 3}}{h}\).

\(\begin{aligned}\mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {9 + h} - 3}}{h} &= \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {9 + h} - 3}}{h} * \frac{{\sqrt {9 + h} + 3}}{{\sqrt {9 + h} + 3}}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {\sqrt {9 + h} } \right)}^2} - {{\left( 3 \right)}^2}}}{{h\left( {\sqrt {9 + h} + 3} \right)}}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{h}{{h\left( {\sqrt {9 + h} + 3} \right)}}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{1}{{\sqrt {9 + h} + 3}}\end{aligned}\)

02

Evaluate the limit

For the expression \(\mathop {\lim }\limits_{h \to 0} \frac{1}{{\sqrt {9 + h} + 3}}\), Quotient law is applicable.

According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

Solve the expression \(\mathop {\lim }\limits_{h \to 0} \frac{1}{{\sqrt {9 + h} + 3}}\).

\(\begin{aligned}\mathop {\lim }\limits_{h \to 0} \frac{1}{{\sqrt {9 + h} + 3}} &= \frac{{\mathop {\lim }\limits_{h \to 0} \left( 1 \right)}}{{\mathop {\lim }\limits_{h \to 0} \left( {\sqrt {9 + h} } \right) + \mathop {\lim }\limits_{h \to 0} \left( 3 \right)}}\\ &= \frac{1}{{\sqrt {9 + 0} + 3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{root law}}} \right)\\ &= \frac{1}{6}\end{aligned}\)

Thus, the value of the limit is \(\frac{1}{6}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use thegiven graph of f to state the value of each quantity, if it exists. If it does not exists, explain why.

(a)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ - }} f\left( x \right)\)

(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ + }} f\left( x \right)\)

(c) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} f\left( x \right)\)

(d) \(f\left( {\bf{2}} \right)\)

(e) \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{4}}} f\left( x \right)\)

(f) \(f\left( {\bf{4}} \right)\)

For what value of the constant c is the function f continuous on \(\left( { - \infty ,\infty } \right)\)?

47. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{c{x^{\bf{2}}} + {\bf{2}}x}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{{x^3} - cx}&{{\bf{if}}\,\,\,x \ge {\bf{2}}}\end{array}} \right.\)

The point \(P\left( {{\bf{0}}.{\bf{5}},{\bf{0}}} \right)\) lies on the curve \(y = {\bf{cos}}\pi x\).

(a) If Q is the point \(\left( {x,{\bf{cos}}\pi x} \right)\), find the slope of the secant line PQ (correct to six decimal places) for the following values of x:

(i) 0 (ii) 0.4 (iii) 0.49 (iv) 0.499 (v) 1 (vi) 0.6 (vii) 0.51 (viii) 0.501

(b) Using the results of part (a), guess the value of the slope of tangent line to the curve at \(P\left( {{\bf{0}}.{\bf{5}},{\bf{0}}} \right)\).

(c) Using the slope from part (b), find an equation of the tangent line to the curve at \(P\left( {{\bf{0}}.{\bf{5}},{\bf{0}}} \right)\).

(d) Sketch the curve, two of the secant lines, and the tangent line.

Find equations of both the tangent lines to the ellipse\({{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}{\rm{ = 36}}\)that pass through the point \(\left( {{\rm{12,3}}} \right)\)

Each limit represents the derivative of some function \(f\) at some number \(a\). State such an \(f\) and \(a\) in each case.

\(\mathop {{\rm{lim}}}\limits_{\theta \to \pi /6} \frac{{{\rm{sin}}\theta - \frac{1}{2}}}{{\theta - \frac{\pi }{6}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free