Chapter 2: Q23E (page 77)
Differentiate.
\(y = {e^p}\left( {p + p\sqrt p } \right)\)
Short Answer
The answer is \(y' = {e^p}\left( {1 + \frac{3}{2}\sqrt p + p + p\sqrt p } \right)\).
Chapter 2: Q23E (page 77)
Differentiate.
\(y = {e^p}\left( {p + p\sqrt p } \right)\)
The answer is \(y' = {e^p}\left( {1 + \frac{3}{2}\sqrt p + p + p\sqrt p } \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-24Explain why the function is discontinuous at the given number\(a\). Sketch the graph of the function.
20. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x + 2}}}&{if\;x \ne 2}\\1&{if\;x = - 2}\end{array}} \right.\), \({\bf{a = - 2}}\)
(a) If\(F\left( x \right) = \frac{{5x}}{{\left( {1 + {x^2}} \right)}}\), \(F'\left( 2 \right)\) and use it to find an equation of the tangent line to the curve \(y = \frac{{5x}}{{1 + {x^2}}}\) at the point \(\left( {2,2} \right)\).
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.
Each limit represents the derivative of some function f at some number a. State such as an f and a in each case.
\(\mathop {{\bf{lim}}}\limits_{h \to {\bf{0}}} \frac{{{\bf{tan}}\left( {\frac{\pi }{{\bf{4}}} + h} \right) - {\bf{1}}}}{h}\)
The point \(P\left( {{\bf{1}},{\bf{0}}} \right)\) lies on the curve \(y = {\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)\).
a. If Qis the point \(\left( {x,{\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)} \right)\), find the slope of the secant line PQ (correct to four decimal places) for \(x = {\bf{2}}\), 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes appear to be approaching a limit?
b. Use a graph of the curve to explain why the slopes of the secant lines in part (a) are not close to the slope of the tangent line at P.
c. By choosing appropriate secant lines, estimate the slope of the tangent line at P.
Show by implicit differentiation that the tangent to the ellipse \(\frac{{{x^{\rm{2}}}}}{{{a^{\rm{2}}}}} + \frac{{{y^{\rm{2}}}}}{{{b^{\rm{2}}}}} = {\rm{1}}\) at the point \(\left( {{x_{\rm{0}}},{y_{\rm{0}}}} \right)\)is \(\frac{{{x_{\rm{0}}}x}}{{{a^{\rm{2}}}}} + \frac{{{y_{\rm{0}}}y}}{{{b^{\rm{2}}}}} = {\rm{1}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.