Evaluate the derivative of the function as shown below:
\(\begin{aligned}f'\left( x \right) & = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\\ & = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {m\left( {x + h} \right) + b} \right) - \left( {mx + b} \right)}}{h}\\ & = \mathop {\lim }\limits_{h \to 0} \frac{{mx + mh + b - mx - b}}{h}\\ & = \mathop {\lim }\limits_{h \to 0} \frac{{mh}}{h}\\ & = \mathop {\lim }\limits_{h \to 0} m\\ & = m\end{aligned}\)
The domain of the function \(f\) is the set of all real numbers.
The domain of the derivative \(f'\) is \(\mathbb{R}\).
Thus, the domain of the function \(f\) and derivative \(f'\) is \(\mathbb{R}\).