Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the limit, if it exists.

\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{9}}} \frac{{{\bf{9}} - x}}{{{\bf{3}} - \sqrt x }}\)

Short Answer

Expert verified

The value of the limits is 6.

Step by step solution

01

Simplify the expression \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{9}}} \frac{{{\bf{9}} - x}}{{{\bf{3}} - \sqrt x }}\)

Multiply and divide the fraction by \(3 + \sqrt x \) in the expression \(\mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }}\).

\(\begin{aligned}\mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} &= \mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} * \frac{{3 + \sqrt x }}{{3 + \sqrt x }}\\ &= \mathop {\lim }\limits_{x \to 9} \frac{{\left( {9 - x} \right)\left( {3 + \sqrt x } \right)}}{{9 - x}}\\ &= \mathop {\lim }\limits_{x \to 9} \left( {3 + \sqrt x } \right)\end{aligned}\)

02

Evaluate the limit

For the expression,\(\mathop {\lim }\limits_{x \to 9} \left( {3 + \sqrt x } \right)\) Difference law is applicable.

According to the sum law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

Solve the expression \(\mathop {\lim }\limits_{x \to 9} \left( {3 + \sqrt x } \right)\).

\(\begin{aligned}\mathop {\lim }\limits_{x \to 9} \left( {3 + \sqrt x } \right) &= \mathop {\lim }\limits_{x \to 9} \left( 3 \right) + \mathop {\lim }\limits_{x \to 9} \left( {\sqrt x } \right)\\ &= 3 + \sqrt {\mathop {\lim }\limits_{x \to 9} \left( x \right)} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{Root}}\;{\rm{law}}} \right)\\ &= 3 + \sqrt 9 \\ &= 6\end{aligned}\)

Thus, the value of the limit is 6.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free